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Complex water systems

Figure: Schematic view of the Bourne irrigation system near Valence .,
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the shallow water equations (SWE)

¥
S(x,t) = A(x,h(x,1))
h(ed) v(x,f) h(x,b)

State (energy) variables are:
q(x,t)
p(x; 1)

pS(x,t)  mass density

pv(x,t)  momentum density

Conservation equations

The simplified Saint-Venant equations is a system of 2 conservation laws

% = —88)( (S(x,t)v(x,t)) mass
2
% = _;X (p (gh(x, t)+ #)) momentum
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Shallow water equations: a control system

Example of control system for the SWE (single reach)

99 = O (stxtvix, 1) + wix, 1

o ;X( (gh(x f+ 060 ”))+kw(x,t)v(x7t)

Boundary conditions (sliding gates):

QO,1) = Svjxo=a hin(t) — H(0, 1)
QLY = Svhr=a A(L, 1) — Pout(1)

where
@ w(x,1t), hin(t), hout(t) are external variables (withdrawals, water levels)
@ (Q(0,1),h(0,1)),(Q(L, t), h(L, t)) are interconnection variables

() , are controlled variables (gates openings) or "inputs"

@ h(0,1)), h(L,t)) are measured variables or "outputs”
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The abstract differential problem for control systems

Abstract (partial) differential problem

2210 =L(an(tn)  xet>0
Bx(z)(x,t)=0 ; x€0Q,t>0
2(0,x) =2(x) ; x€Q

where
@ Q is the spatial domain with boundary 02
@ z(t,x) is the state and z(x) the initial state profile

@ L (z,t)and By (z,t) are non autonomous differential operator
acting on the space variable x
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Tokamak fusion reactors

Coils

Magnetic

Blanket field line

Figure: Schematic view of the coming ITER or existing Tore Supra
tokamak reactors at CEA - Cadarache (Saint-Paul lez Durance)
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the resistive diffusion equation

Figure: reduction asumptions
Figure: toric magnetic
coordinates

The state variable is the poloidal plasma magnetic flux ¥ (p, t)

MHD modelling and the resistive diffusion equation

@_WQC %)

at ~ pop \u"dp
with », the resistivity, u, the permitivity and p the magnetic surface index or
reduced radial coordinate.
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Other examples of distributed parameters systems

academic examples: wave, heat, beam, membrane and telegrapher
equations

piezzoelectric actuators

fluid flow and fluid/structure control systems
magneto-hydrodynamic flows, plasma control

classical Maxwell field equations

quantum mechanics (Schrédinger and Klein-Gordon equations)

free surface problems (Burger, Korteweg de Vries, Boussinesq,
Saint-Venant/SWE)

thermodynamics (chemical reactions, transport phenomena, phases
equilibrium, etc.)

biology (preys-predators, population dynamics, bio-reactors)

= most not simplified real world applications lead to DPS models!

10/72



Introduction
[ ]

Some characteristics of distributed parameters systems

@ variables are non uniform in space, state equations are Partial
Differential Equations (PDEs)

@ Boundary Control Systems or distributed control

@ extensions of classical control results exist for linear DPS using
semigroup theory: transfer functions, 1/0O operators, controllability or
observability Grammians, state space realization, LQG or H, control, ...

@ results exist for the regional analysis and control of linear (or bilinear)
DPS (regional controllability or observability, spreadability, viability, etc.)

@ practical solutions for control laws or observers design remain hard to
achieve (solution of operators equations, infinite dimensional control)

@ they are no general results for nonlinear DPS

= Particular cases: systems of conservation laws with 1/O or port variables
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Introduction

Different approaches for the control of DPS

@ finite dimensional approximation (total or partial discretization)

[Quarteroni et Valli 1994] Numerical Approximation of Partial Differential Equations, Springer-Verlag
[Zuazua 2002] Controllability of partial differential equations and its semi- discrete approximations, Disc
Cont Dyn Syst 8 (2) 469-513

discrete modelling approaches (cellular automata, Lattice Boltzmann
models)
[Chopard et Droz 1998] Cellular Automata Modeling of Physical Systems, Cambridge University Press

semigroup of linear operators (extensions to the semilinear case)
[Curtain et Zwart 1995] An introduction to infinite-dimensional linear systems theory, Springer-Verlag

PDE / functional analysis approach
[Lions 1988] Exact controllability, stabilizability and perturbations for distributed systems, SIAM Rev.30 pp.
1-68

regional analysis (mainly using PDE/semigroup approaches)

[El Jai et al. 2009] Systemes dynamiques : Analyse régionale des systémes linéaires distribués, PUP

port-Hamiltonian approach
[Duindam et al. 2009] Modeling and control of complex physical systems: the Port-Hamiltonian approach,

Springer-Verlag
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Basics

Simple examples and basic ideas about the
dynamics and boundary conditions in DPS
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Hyperbolic example (1/2)

The telegrapher’s equation

% 182V rov
W( ,X) = WW(LX)— 75(1‘,)()

plastic jacket

dielectric insulator with

@ ~, the lineic capacitance (farads per unit length)

/ X @ /, the lineic inductance (henries per unit length)
meslieshie @ r, the lineic resistance (ohms per unit length)

centre core

() L, the propagation speed

Vall
u(0,t EEEy u(L,t
( >L0 0 ‘i< 1)
|
|

|
|
z=0
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Hyperbolic example (2/2)

t(yl)~1/? t(ye) =12

BV 18V rov

otz Al oxz 1ot
The solution with initial impulse in x = 0 @ compact support
(unbounded spatial domain): @ finite propagation

_ speed ¢ =c /7]
V(t, x) = eT/IIo (é\/tz - 7Ix2)

@ shocks (no
where [y is some modified Bessel’'s function regularization)
[Courant & Hilbert, vol. 2]
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Basics
o

Parabolic example (1/2)

The heat equation
00 _ D o0
5(1‘7)() = TCPW( ,X)
with
@ D;, the thermal conductivity [Js~'m TK~]
@ p, the lineic mass [kg m™"]
" @ C,, the specific heat capacity [J kg~ 'K~
Jean Baptiste Joseph i b P p .y.[ g2 i ]
Fourier (1768-1830) @ k:= ﬁ the thermal diffusivity [m~s™']

Relative
temperature
0(x,t) A

16/72
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Parabolic example (2/2)

00, 0°0

ot~ Tox?
The solution with initial impulse in x =0
(unbounded spatial domain):

0(t, x) = %ﬂe‘ﬁ

unbounded support for
the solution (t > 0)
infinite propagation
speed ¢ =€ /7/

no shocks
(regularization/damping)
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Elliptic example

Potential V'(z,0) Potential V(z,)
along the x axis along the y = g axis
y=0 +1

1/:17:$

The Laplace equation for the potential
, , @ singularities may arise in
oV oV the y direction from
— W, X))+ =—(,x)=0 X
ayz V)t e (v X) smooth profiles (V(x, 0))

with “initial” condition

V(0,x) = 2 XER
has solution
_ 1 Pierre Simon Laplace
V(y,x) =Re (m) (1749-1827)
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Classification of second order PDEs (1/2)

Let us consider a PDE of the form

2 2

82 8z 0°z
8 2(X y)+2ba 8y(X7y)+087y2(X7y)+d_0

where a, b, ¢, d may depend on x, y, z, gj and az . Then using a change of
variables

X| | a B X

Y] v ¢ y

82 2
AW( )+C—(x y)+ D=0

The PDE reduces to

where A, C, D may dependon X, Y, z, g)z( and ‘92
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Classification of second order PDEs (2/2)

a b

@ hyperbolic form: AC < 0 < det [ d

| <o

8z &2 8z

Wave equation: T (&, x)— B 2(1‘ X) =

@ elliptic form AC > 0 < det { 2 Z

| >0
4 2z
Laplace equation: W(X’Y) + a—yz(y, x)=0

@ parabolic form AC =0 @det[ i Z } =0

9Pz 0z
Heat equation: OW + kﬁ(t X) — (t X) =
Remark: Same ideas apply for second order PDEs with N independent

variables
20/72



Boundary conditions, the wave equation example (1/5)

1D wave equation - spatial domain x € R

state equation: Pz _ 202

9 "o~ ¢ oxe
- o Z(x,0)=2(x) VxeR
initial conditions: %(x, 0)=2z(x) VxcR

Jean Le Rond . . ;
D’Alembert where z, and z; are smooth position and velocity profiles

(1717-1783)

D’Alembert general solution - travelling waves

2(x,t) = o(x — ct) + P(x + ct) /\ﬁ 47/\
where ¢(-) and ¢ (-) arbitrary smooth functions T

21/72



Boundary conditions, the wave equation example (2/5)

With position and velocity initial conditions

{ 20(x) = o(x) +1(x)
z1(x) = —c¢’(x) + ¢’ (x)

one gets waveform solutions

Hx) = 20(0) — ()
B(X) =[5 % [21(6) + 0%2(&)| de + A

hence the unique solution

z(x,t) = zo(x — ct) + 2lc /i:t [ &+ C%Zg(ﬁ)} d¢

For instance, the initial conditions z(x, 0) = zy(x) and 9:z(x,0) = 0 gives

1 1
zZ(x,t) = Ezo(x —ct)+ Ezo(x + ct)

22/72



Boundary conditions, the wave equation example (3/5)

1D wave equation - spatial domain
e . (922 2 822
state equation: = C Fyel

z(x,0) = z(x)  Vxe[0,L]

initial conditions: { %(X, 0)=z(x) vxelol]

ﬁ t) l r-axis

;q
I
(=]

\
e
e~

Vibrating string attached at both ends

2(0,)=0 Vvt>0

boundary conditions (Dirichlet): { Z2LH)=0 Vi>0
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Boundary conditions, the wave equation example (4/5)

The initial conditions define the waveform solutions

6(x) = 20(x) = $(x)
B(X) = Jy 5 [21(€) + 0%2()] de + A

only for x € [0, L] but the boundary conditions read

2(0,t) = 0 = ¢(—ct) + ¥(+ct)
zZ(L,t) =0 =¢(L—ct) + (L + ct)

and alllow to extend the waveforms ¢ and ) and the computation of
2(x, t) = é(x — ct) +v(x + ct)
for any time t > 0 and position x € [0, L] including those with

x—ct<0or x+ct>L
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Boundary conditions, the wave equation example (5/5)

@ unbounded spatial domain x € R: initial conditions given in [0, o)
allows to predict the behaviour in [0, L] for all time { > 0

@ bounded spatial domain x € [0, L]: boundary conditions are required
to predict the behaviour outside 0 < x —ct < x4+ ct < L

some heuristic rules for boundary conditions (1D problems)

@ as much as the higher order of derivation N, w.r.t. x

@ involving derivatives up to order Ny — 1
@ must propagate through the considered spatial domain

25/72



Boundary conditions, the heat equation example (1/2)

The heat equation 0
O (tx) = kD Lt x)
with
@ initial condition:
0(x,0) = 6o(x) ¥x € [0, L]
@ boundary conditions (Neuman):

@(o,t) -0
80
Lty =
SuL = o
Relative
temperature

0(x,t) ? e e,

26/72



Boundary conditions, the heat equation example (2/2)

Assuming symmetry the heat equation in polar
coordinates reads:

00 _ _ 12 % y-axis
E(r, t) = kAo(r,t) =k Br (rar(r, t))

p-axis
Initial condition:
6(0,x) =0 Vvr e [0,R]

Boundary condition (Neuman):

o0 0(p.t)

el — >

c’)r(R’ )=0VvVt>0 —]
Hidden boundary condition: assuming X
smoothness and symmetry p-axis

90
5,00 =0vt>0
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State space definition (1/2)

The heat equation

00
9 %) = K2 (t.5)
with Neuman boundary conditions:
06
06
a(L, ) = 0

Initial temperature

A Temperature profile 6y(x)

profile 0(, z)

The heat equation

o0 %0
at( X) = k*(t X)

with Dirichlet boundary conditions:

0(0,t) = 0
o(Lt) = 0

Initial temperature
A Temperature profile 6y(x)
/

profile 0(t,z) /

]

[
&~

28/72



State space definition (2/2)

@ The initial state (temperature profile) at time f, = 0
6o : [0,L] = R : x — 6o(x)
allows to compute the trajectory 6(t) (solution) for ¢ > 0
@ The state () is the (unique) solution of both:
o the state equation 2%(t,x) = k%(r, X)

. 200, t
o the boundary conditions { 93

@ The state space, e.g.

3

h,
Z:=H(0,L)=Sh:[0,L] >R | &
dh

is equiped with some relevant structure (e.g. inner product and/or norm)
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Control systems (1/3)

boundary
heating l o measure
> Toot (), Qeoot (1) measurement y(t) = 0(L, 1)

Pheat (f) Zone w
J_ r=1L
T,

@(t’ X) = k%(t X) + a(gw(Tcoo/(t)7 Qcool(t),x) - a(t, X))

ot
= — [ 6(t,x)dx
I ACK
with finite rank bounded linear output T, (t) and distributed control
Qw(t, X) =0, ( cool( ) Ocoo/(t) ) With( cool( ) Ocoo/(t)) S R?
and boundary control/measurement:

00 (0 t) = Phea[(t) = Ua(t) and

_Dt8
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Control systems (2/3)

o0 %0

E(t, X) = kﬁ(z‘, X) + a Twan(t, x) — 6(t, x))
= ka—ze(t X) — afd(t, x) + Bu(t)
- axz k) b

with finite rank bounded linear distributed control:
B:U:=R—Z:u(t)— (Bu)(t,x) := ¥(x)u(t)
and
1Bu(®)llz = [u®O ¢z = 1Bl .2y = 1¥llz < o0

Remark: spatial distribution of the control action often
has an "intuitive" physical meaning

Twall (’L t) = U(t)w(l)

|7

in
cool

(t)

=: u(t)

¥(x)

)
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Control systems (3/3)

Assume Z C L, ([0, L]), then the output operator

C:Z—>Y:=R:z»—>i/z(x)dx . ,
lw| Jo T,(t) :== = [ 0(t,x)dx

satisfies 0 ‘

1

m /wz(x)dx |

5: [ 1200lax s

= / 10 (x)|z(x)|dx
[0,4]

< el - 121l o,

Cz| =

IA

Hence ’ T
Clleipr) £ ——= < "
ICl| (L2,R) V2e

32/72



Homogenization (1/3)

boundary
heating Isolated

—= U
T = z=nl;

9 x) = A@(z‘x)—k (%)

o)

with boundary control

—o
~ ~
NN
~—
Il
&
—_~~
—
=
Il
VR
c C
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Homogenization (2/3)

The change of state variable
z(t, x) == 0(t, x) — B(x)ua(t)
with B : [0, L] — R? : x + [B(x); B2(x)] such that
BB(x)us = us

transforms the original boundary control problem into

P2tx) = Az(t;x)+ AB()us(t) ~ B (1)
u(t,x)

0z

0z

oLt = 0

with finite rank distributed control (¢, x) and homogeneous boundary
conditions

34/72



Homogenization (3/3)

In the previous heat equation example

B(x) = [B:(x): Ba(x)] := {x(1 - Xy, %}

1 0
Xo)u6_(0 1>U8:U8

x=L
and z := 6 — Buy transforms the original boundary control problem into

gives
9B(x)

BB(x)up = ( o

ox

oz B 82 1 +1 X _X2 U%
(X)) = 82(tx)+{TTHU5}*{X(1*ﬂ)'ﬂHu(%}
0z

5(07” = 0

0z

and u5(t) = 0 (homogeneous boundary condition at the isolated end x = L)
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Local models

Building DPS models from local lumped balance
equations in infinitesimal volumes
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Local models
[ ]

The telegrapher’s equation example (1/4)

Constitutive equations:

Balance equations (Kirchoff’s laws): ur = r(x)éxi(x+dx,t)

0 .
ulx+ox,t) = ulx,t)—u—u u = E(/(X)&XI(X—I—(SX,I‘))
ix+ox,t) = i(x,t)—iy—1ig g = gx)oxu(x,t)

0

u = = (v(x) dx u(x, 1))
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Local models
L ]

The telegrapher’s equation example (2/4)

+ u u
i(z,t) - i(x + 0z, t)
- r(x)ox l(z)ox *
u(,t) Wa)da - u(x + dx,t)
Balance equations:
u(x, t) + %(X, Hox+o(0x) = u(x,t)—réxi(x+dx,t)— léxg(x +ox,t)
. i . ou
i(x, t) + a—x(x, Hox+o(6x) = i(x,t)—gdxu(x,t)— wéxa(n t)

Considering 6x — 0:

ou . oi
B = 00D~ 100 5000
Do = —gutx ) 100 9 (x, 1 -



Local models
[ ]

The telegrapher’s equation example (3/4)

In the uniform case (i.e. I(x) = I,v(x) = v, r(x) = r, g(x) = g), differentiating
these balance equations, one gets:

W00 — LU0+ (rr+ gl) Y00+ gru(xt) = 0
P X2
2 :

Pi Pi %

lvﬁ(x,t) Ox 2(X B+ (ry+9) t(x,t)—f—gri(x,t)

which are hyperbolic second order PDEs since —/~ < 0.

For r = g = 0 we get:

> 0%u
£ 2 (60 = il
with

]
Vh
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Local models
L ]

The telegrapher’s equation example (4/4)

Interactions with the environment (boundary conditions):

@ boundary x =0
u(0,t) = e(t)

@ boundary x =L

ot (1) = (L, 1)
U(L7 t) S Routi(L, f) —+ %’U(:)

Qout(0) = Qo

— the transmission line may be connected to any other kind of lumped (or
40/72

distributed) active or passive circuit



Local models
[ ]

The reaction - advection - dispersion equation (1/5)

Concentration
C(z, t)A[kgm=3] [

Flow F' [m3s~!] BH 3 -
=0 T T+ oz r=1L
Mass balance equation for the [x, x + dx] “element”:
% [SoxC(x,1)] = [FC(x,t)— FC(x + ox, 1)] advection
oC ocC . .
+ —Dmsa(x, t)+ D,,,Sa(x + dx,t)| dispersion

+Sdxr(C(x,t)) reaction

with S [m?] the cross section area, D, [m?s™ '] the axial dispersion
coefficient and r(C) [kg s~'m~3] the reaction rate.
41/72



Local models
o

The reaction - advection - dispersion equation

(2/5) Using again Taylor's expansions:

FC(x,t) — FC(X +6x,1) — gf(x £)5x + 0 (6x)
oC oC 82C
—Dmsa()ﬂ B+ Dmsa(x +6x,1) = +Dm88 5 (X, 1)6x + 0 (6x)
one gets when §x — 0:
0 oC 820
S ISCOGOT = —FS2(x,1)+ DnSTZ (X, 1) + ST (C(x, 1))

Reaction-advection-dispersion equation

Pty = 2+ 0n2 Sty +r(C1x.1)

ox?

with v := £ [ms™"] the superficial velocity

42/72



Local models
[ ]

The reaction - advection - dispersion equation (3/5)

Mass conservation at the inlet:
FC(07,0)~ DnSO0(0%,1) = FCul)
Concentration [kgm ™3]
Thermodynamical equilibrium at the outlet:

C(0+,1)

(L) = 0

Danckwertz boundary conditions

Flow F' [m%‘ﬂ Z Dmgig(ott) = V(C(0+:t)_cin(t))
=0 oC , _
() 0
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Local models
L]

The reaction - advection - dispersion equation (4/5)

Linear reaction - advection - dispersion equation

Assume e.g. a radioactive tracer with a decay r(C) := —AC, then:
oC oC d*C
W(X’t) = —Va(x,t)—FDmW(X,t)—)\C(X,t)

With the change of state variable Z(t, x) := C(t, x)e*':

8z

0Z, . (0C __ 9% oz
St =e (m (x, 1) + A(C(x, t))) = V2 (1) + Do 5 (X, 1)

With x := ¢ 4+ vr and t = 7, assume Z(¢,7) := Z(€ + vr,7) = Z(x, 1):

8z

>’z
mW(§+VT, 7’) = Dmaigz(fﬂ-)

oz 0z oz
g(ﬁﬂ') = W(§+VT»T)+V§(§+VTW) =D

44/72



Local models

The reaction - advection - dispersion equation (5/5)

Non linear transport-reaction-diffusion

Assume a biological tracer with a with logistic growth rate r(C) := rC (1 — ﬁ)
then:

oC oC

C
82‘(X ) = fva (xt)+Dm82(xt)+rC( 7?)

multiple species reaction aA + bB = cC + dD

Assume reaction kinetics rate r(A, B), then:

0A 0A 0*A
at(x7t) - 7V87(X t)+Dma 2(X7t)7ar(A7B)
0B *B
51 % ) = —va—x(x, t)+DmW(x, t)y—br(A B)
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Local models
L]

The reaction - advection - dispersion equation

Examples of reaction kinetics:
@ logistic growth reaction rate (saturation)

r(X):p<1f%)X

where X is the population concentration
@ Monod reaction rate (biochemical reaction) for X + k1S — ko X

(8.0 = £75 x

with S and X the limiting substrate and biomass concentrations
@ law of mass action for chemical reactions aA + bB = ¢C + dD

r(A, B) = kA°B®
with for instance k = koe_TTE (Arrhenius law)

46/72



Local models
[ ]

Non isothermal reactor (1/3)

Tempm“?ff{;re
T, t) K]

Toalt) (K}

x=0 T T+ o0x r=1L

V Toout) (6]

@ external heat transfer (cooling jacket)
U= —-DéxRn(T(x,1) — Teool(t))

with Ry, and D the wall heat transfer coefficient and diameter (S = ”TDZ)
@ reaction heat
Soxr(C(x, 1), T(x, 1)) AHr
with AHg [J kg™ '] the reaction enthalpy ( AHg < 0 for exothermic
reaction) and r(C, T) [kg s~ 'm~3] the reaction rate.

47172



Local models
[ ]

Non isothermal reactor (2/3)

Heat balance equation for the [x, x + dx] “element™:
0 oT .
3 [pCpSox T(x,1)] = —chpa(x, t) 6x convection

2T . .
+DmSW(x, t) 0x dispersion

+Sdx AHgr(C, T) reaction heat
+Déx Rin (Teool(t) — T(x, t)) exchange with wall

with p [kg m~3] the specific mass and C, [J K~' kg~'] the specific heat.

Mass and heat balance equations

ocC oC 9°C

Bt = Vox TP +r(CT)

oT AT Dy 8T  AHg 4Ry,

— = —V— —_— T = T
ot Y ox pCp OX? + pCp r(C,T)+ wDpCp (Teoa(£) )
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Local models

Non isothermal reactor (3/3)

@ Mass and heat (?) conservation at the

inlet
Temperature [K] @ Thermodynamical equilibrium at the
, outlet
Tty o) -
—{- Danckwertz boundary conditions
T(0F,¢ /\
070 DaZ2(0%0) = v(CO"D) - Cu(t)
- oT +
Ding o (07,8) = v(T(0", 1) = Tin(1))
- aC ,, _
Flow F [m3s™! @y -
ow F [m3s7!] - 8X(L , 1) 0
r= oT ,, _
a(L , ) = 0
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Shallow water flows

Some examples of free surface shallow water
flow models
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Shallow water flows
°

Free surface fluid flow model (1/5)

V() S(x.0) h(x,0)

A
h(xt)

(x)

@ 1D assumption: average velocity field v(x, t) only depends on
longitudinal coordinate x

@ free surface flow delimited by boundary conditions (gates, weirs,
junctions, etc.)

@ gravity forces, waveform restoring forces, friction forces, eventually
dispersion

51/72



Shallow water flows
°

Free surface fluid flow model (2/5)

h(x,t)

ol 1) ( + 0x,t)
S(x,t) = Bh(z,t
hizt) h(z + 62, 1) (%) = Bh(a )
Q(z,t) = Bh(z, t)v(z,t)
2 () 2@+ 07 B
z x4+ 0z

@ Mass balance equation

D lpstxnox] =

oS

Ex,t):

+pS(x; v (x, t) = pS(x + 6x, v (x + 6x, 1)

,% (pS(x, )V(x, 1)) + 0 (6x)

0Q Coh __o(hv)

~ox D o Hr =51
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Shallow water flows
°

Free surface fluid flow model (3/5)

: S(x,t) = Bh(w,t)
h(z,t) i h(z + 0z, t); h(zx,t)
Q(a,t) = Bh(, t)v(z, 1)

7[("'); zf(x + 0T B

x x4+ 0z

@ Momentum balance equation

% [pS(x, )V(x, 1)5x] = [pQx, V(x, ) — pQ(X + 8%, V(X + 6, 1)]
+ gravity + pressure + external friction
+ internal dissipation + wave restoring forces
+ etc.
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Shallow water flows
°

Free surface fluid flow model (4/5)

Wz + 62.t)
h(z,t) h(z,t)

bve O(x) ~ sin(f(x
Fg(z‘ fT" T m/ 7))
dzy
I —(x)
—_ —

_ dz
T~ oz |

zf(x)

z T+ 6z

@ Force resulting from the “hydrostatic” pressure distribution
P(x,t) = pgh(x,t) = Fp=—-5(x,1t)dx Z—XP(X, t) = —pgS(x, t)g—:(x, t)ox
@ “Resulting” gravity force (small slope assumption)
Fo = sin(6)pS(x 0ixg~ 22 (x)S(x, ) ix g
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Shallow water flows
.

Free surface fluid flow model (5/5)

Frict
force
LY Fy(v)
S(a,t) Fylont) wn? QI _ “,»I';\"X

SZRB

P ,” e Wetted perimeter
! R(x,t) = pd

@ “External” friction forces (Manning Strickler formulae)

2_Q(x, 1)[Q(x, 1|

Ff(X, t) = —pS(X7 t) 5Xgn W

friction slope

@ “Internal” dissipation (empirical dispersion/mixing)

Fo(x,t) = pS(x,t)dxD @(X f)
v bl —P 9 Vaxz b
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Shallow water flows

Example: the Saint-Venant or Shallow Water Equations (SWE)

@ hydrostatic pressure distribution, gravity and Manning-Strickler friction

SWE in (Q, S) variables (waterbed profile S = S(h, x))

os _ _0Q
ot ox
Q o [Q? oh  dz ., QQ
ot 8)([8] S[ T T 82R4/3]
SWE in (h, v) variables (rectangular waterbed S = Bh and Q = Bhv)
oh _ 9(hv)
ot ox
v _ 0[], |oh, dy o vy
ot ~ “ox|2| 79 |ox T ax (27
B+2h
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Shallow water flows
.

Example: the Burger’s Equation (1/3)

@ Pressure gravity and exterior friction forces are neglected

For a rectangular waterbed

oh ~ 9(hv)

ot ox
2 2

ov 0 [v } D o°v

ot “ox |2 ox2
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Shallow water flows
°

Example: the Burger’s Equation (2/3)

Cars flow
Cars velocity v(p) J(p) == pu(p)

Cars density p

Pmaz

@ model for traffic flow of cars on a highway
@ density p(x, t) and velocity v(x,t) of carsin x e Rattime t >0
@ the cars conservation equations reads

b oJ ;
5? = =55 0 1) With J = pv (p) = pVinax (1 - p:ax>

@ the solution exhibits shock formation (traffic jam) and travelling shocks
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Shallow water flows
]

Example: the Burger’s Equation (3/3)

time ¢ initial density
profile po(z)
Shock at
_time Prmas

velocity

spatial
coordinate &

coordinate

Assume L and  are such that £ = vy, then the change of variables
X

5 t 2p
== t=—u:=1-
L T Pmax

transforms the previous equation into the Burger equation

ou_ o [wE] ou_ 0w
o1 0% at ~ ox |2

2

whose general solution may be obtained by the method of characteristics:

u(x + tup(x), t) = uo(x)
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Shallow water flows
°

Others shallow water models

@ Korteweg - De Vries (Burger’s equation with “wave restoring” force)

v oo & oy
ot ox 2 Ox?
~~ ~——

steepening spreading
@ Boussinesq (SWE with supplementary “dispersive” term)

oh o) RS
ot ox 6 Ox3
v d {v2 ] H 8 8%v

2 2 Ot Ox?
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Shallow water flows
°

Boundary conditions for shallow water equations

@ Submerged sluice gate

Qi(L, 1) = Q(0, T) = aB(t)\/2g (M (L, t) — h2(0, T))

@ Free weir
Qi(L,t) = aBhi(L, t)\/2ghs (L, 1)

@ Y junction

Qi(L, 1) + Qu(L, 1) = @5(0, )
h(L,t) = ho(L, t) = hs(0, 1)
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Control problems

Example of control problems for distributed
parameters systems
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Control problems
[ ]

Exact controllability (1/2)

v(x,t)
hup(t ul(t) h(.’l},t) \!“hd()un )

T = T r=1L
oh 19}
E)t X, t) - _a(h(xa t)V(Xa t))
ov B o] v3(x, t)
E(Xv ) = “ox (gh(X7 tH_T)
Boundary control:
Q(0,t) := B(hv)|x=0 = aui(t)\/hy(t) — h(0, 1)

Q(L, 1) B(hv)|x—t = aus(t)\/A(L, ) — Paown(t)

63/72



Control problems
L]

Exact controllability (2/2)

v(x,t)
hap(t
lu1 © h(z, 1) \W(ghhdow(o

z=0 T r=1L

exact controllability

Assume the initial state profile is (ho, vo) € Z.

The system is exactly controllable at (hy, vo) € Z intime T > 0 if and only if
for any admissible target state profile (hc, v;) € Z,

there exist inputs uy(t) and ux(t) admissible on [0, T] such that

(h(T),v(T)) £ (he, ve)

where (h(t), v(t)) € Z denotes the solution for initial conditions (ho, vo) and
inputs vy and w
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Control problems
[ ]

Approximate controllability

Relative
temperature
0(z,t)

{ %?(Ir) 1\73%’ + uf.
0(0,2) = ()

S0 pelor] T

=0 =L
approximate controllability or weak controllability

Assume the initial state profile is 6y € Z.

The system is approximately controllable at 6, € Z in time T > 0 iff.
for any admissible target state profile 6 € Z and for any ¢ > 0

there exists an input u(t) admissible on [0, T] such that

10(T) = bell; < e

where 6(t) € Z denotes the solution
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Control problems
o

Regional analysis

v(z,t)
uy (t) h(-’l?,t) U2 h(irm 71( )

z=0 x r=1

P (t

regional controllability

Let w C Q be some region of interest of the spatial domain. Let the
restriction application be defined as:

po : LA(Q) = LP(w): 2 puz = 2|,

The system is regionally exactly controllable on w at z, € Z(Q2) in time
T > Oiff.
for any admissible target state profile z. € Z(w) there exists a control u(t)
and such that

p.2(T) = Z
where z(t) € Z(£2) denotes the solution
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Control problems
[ ]

Spreadability (1/2)

@ Examples:

@ desertification / vegetation dynamics / fire spread
@ epidemies / disease spread
@ pollution / convection-diffusion

@ Consider a boolean property
P:Z — {0,1}°
z = (Pz):Q2—{0,1}
1 when z(x) satisfies the propert
(PZ)(X):{ 0 else 0 Propery
Examples

@ (Pz)(x) =1« z(x) = p(x), with p a given profile
o (Pz)(x) =1« z(x) € K, with K a set of constraints

@ Subregion w; := {x € Q |(Pz(t)) (x) = 1} with z(t) the solution
@ Assumption: wp # 0
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Control problems
o

Spreadability (2/2)

2

Spreadability - inclusion Spreadability - measure

spreadability

The system is P-spreadable from wy during the time interval / := [0, T] if the
family (wt),c, is non decreasing:

Vs, tel:s<t=wsCuwt or p(ws) < p(wr)

Otherwise it is said P-resorbable
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Control problems
[ ]

Example stabilizing feedback

o (¢ v(x,t)
e ui(t) h(z,t) s (t)] | "down (1)
T = 0 T r=1L
Look for static state (operator) feedback
h(-, t)
(Wn) - w0
h(-, 1)
(Wn) - o

such that B t) — he()
< V(-:t)—VZ(-) > Z—>Owhent—>oo

where h; and v, are target water level and velocity profiles
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Control problems
L]

Example LQ control

hp(t
( uy (t)

h(z,t)

v(x,t)
hdown )

z=0

T r=1L

Look for control signals uy(t) and ux(t), t € [0, T] which solve

{ h(t) — he
v(t) — ve

r

with (Q(x) > 0 a.e. in [0, L])

(-5

v(t) : ,\:Z }

min
Uy, Uz

h(t, x) —
v(t,x) —

[ it e
0 ] e [ 67109 o

and where (h(t), v(t))" is the solution of the SWE with sluice gates boundary

conditions
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Control problems
[ ]

Classical control problems for DPS

Classical problems such as

stabilization / state or output feedback control
optimal control

estimation / feedback observer design
frequency-domain description and control
reduced order control and robustness
distributed parameters identification

may be addressed with specific techniques
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Control problems
[ ]

Specific control problems for DPS

Some control problems specifically arise for DPS
@ actuators/sensors placement

localization (perturbations)

regional control/observation

spray control

mobile sensors/actuators

moving boundary control problems
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