Shallow water flows

Control problems

Day I : distributed parameters systems modelling - the classical approach

Laurent Lefèvre

Laurent.Lefevre@lcis.grenoble-inp.fr

Laboratoire de Conception et d'Intégration des Systèmes (LCIS) Université Grenoble Alpes - Grenoble Institute of Technology

School: Introduction to modelling and control of systems governed by PDEs 2nd IFAC Workshop on Control of Systems Governed by PDEs

Bertinoro, 9-12 June 2016

Introduction

Basics

Local models

Shallow water flows

Control problems

Outline

- An introduction to distributed parameters systems
- 2 Fundamental examples and basic ideas
- Lumped balance equations in infinitesimal volumes
- Free surface shallow water models
- 5 Some example of control problems

Local models

Shallow water flows

Control problems

An introduction to distributed parameters systems

Introduction	Basics
00000000	

Shallow water flows

Control problems

Complex water systems

Figure: Schematic view of the Bourne irrigation system near Valence 4/72

ntroduction	Basics
00000000	

Shallow water flows

Control problems

the shallow water equations (SWE)

State (energy) variables are:

$$q(x,t) = \rho S(x,t)$$
 mass density
 $p(x,t) = \rho v(x,t)$ momentum density

Conservation equations

The simplified Saint-Venant equations is a system of 2 conservation laws

$$\frac{\partial q}{\partial t} = -\frac{\partial}{\partial x} \left(S(x,t)v(x,t) \right) \text{ mass}$$

$$\frac{\partial p}{\partial t} = -\frac{\partial}{\partial x} \left(\rho \left(gh(x,t) + \frac{v^2(x,t)}{2} \right) \right) \text{ momentum}$$

Local models

Shallow water flows

Control problems

Shallow water equations: a control system

Example of control system for the SWE (single reach)

$$\frac{\partial q}{\partial t} = -\frac{\partial}{\partial x} \left(S(x,t)v(x,t) \right) + w(x,t) \frac{\partial p}{\partial t} = -\frac{\partial}{\partial x} \left(\rho \left(gh(x,t) + \frac{v^2(x,t)}{2} \right) \right) + kw(x,t)v(x,t)$$

Boundary conditions (sliding gates):

$$Q(0,t) := Sv|_{x=0} = \alpha u_1(t) \sqrt{h_{in}(t) - h(0,t)}$$

$$Q(L,t) := Sv|_{x=L} = \alpha u_2(t) \sqrt{h(L,t) - h_{out}(t)}$$

where

- $w(x, t), h_{in}(t), h_{out}(t)$ are external variables (withdrawals, water levels)
- (Q(0,t), h(0,t)), (Q(L,t), h(L,t)) are interconnection variables
- u₁(t), u₂(t) are controlled variables (gates openings) or "inputs"
- h(0, t)), h(L, t)) are measured variables or "outputs"

Local models

Shallow water flows

Control problems

The abstract differential problem for control systems

Abstract (partial) differential problem

$$\begin{aligned} \frac{\partial z}{\partial t}(t,x) &= \mathcal{L}_x(z,t)(t,x) \quad ; \quad x \in \Omega, t > 0\\ \mathcal{B}_x(z)(x,t) &= 0 \quad ; \quad x \in \partial\Omega, t > 0\\ z(0,x) &= z_0(x) \quad ; \quad x \in \Omega \end{aligned}$$

where

- Ω is the spatial domain with boundary $\partial \Omega$
- *z*(*t*, *x*) is the state and *z*₀(*x*) the initial state profile
- *L_x*(*z*, *t*) and *B_x*(*z*, *t*) are non autonomous differential operator acting on the space variable *x*

Local models

Shallow water flows

Control problems

Tokamak fusion reactors

Figure: Schematic view of the coming ITER or existing Tore Supra tokamak reactors at CEA - Cadarache (Saint-Paul lez Durance)

Local models

Shallow water flows

Control problems

the resistive diffusion equation

Figure: reduction asumptions

Figure: toric magnetic coordinates

The state variable is the poloidal plasma magnetic flux $\psi(
ho,t)$

MHD modelling and the resistive diffusion equation

$$\frac{\partial \psi}{\partial t} = \frac{\eta}{\rho} \frac{\partial}{\partial \rho} \left(\frac{1}{\mu} \rho \frac{\partial \psi}{\partial \rho} \right)$$

with η , the resistivity, μ , the permitivity and ρ the magnetic surface index or reduced radial coordinate.

Local models

Shallow water flows

Control problems

Other examples of distributed parameters systems

- academic examples: wave, heat, beam, membrane and telegrapher equations
- piezzoelectric actuators
- fluid flow and fluid/structure control systems
- magneto-hydrodynamic flows, plasma control
- classical Maxwell field equations
- quantum mechanics (Schrödinger and Klein-Gordon equations)
- free surface problems (Burger, Korteweg de Vries, Boussinesq, Saint-Venant/SWE)
- thermodynamics (chemical reactions, transport phenomena, phases equilibrium, etc.)
- biology (preys-predators, population dynamics, bio-reactors)
- \Rightarrow most not simplified real world applications lead to DPS models!

Local models

Shallow water flows

Control problems

Some characteristics of distributed parameters systems

- variables are non uniform in space, state equations are Partial Differential Equations (PDEs)
- Boundary Control Systems or distributed control
- extensions of classical control results exist for linear DPS using semigroup theory: transfer functions, I/O operators, controllability or observability Grammians, state space realization, LQG or H_∞ control, ...
- results exist for the regional analysis and control of linear (or bilinear) DPS (regional controllability or observability, spreadability, viability, etc.)
- practical solutions for control laws or observers design remain hard to achieve (solution of operators equations, infinite dimensional control)
- they are no general results for nonlinear DPS

 \Rightarrow Particular cases: systems of conservation laws with I/O or port variables

Shallow water flows

Control problems

Different approaches for the control of DPS

- finite dimensional approximation (total or partial discretization)
 [Quarteroni et Valli 1994] Numerical Approximation of Partial Differential Equations, Springer-Verlag
 [Zuazua 2002] Controllability of partial differential equations and its semi- discrete approximations, Disc
 Cont Dyn Syst 8 (2) 469-513
- discrete modelling approaches (cellular automata, Lattice Boltzmann models)

[Chopard et Droz 1998] Cellular Automata Modeling of Physical Systems, Cambridge University Press

 semigroup of linear operators (extensions to the semilinear case) [Curtain et Zwart 1995] An introduction to infinite-dimensional linear systems theory, Springer-Verlag

• PDE / functional analysis approach

[Lions 1988] Exact controllability, stabilizability and perturbations for distributed systems, SIAM Rev.30 pp. 1-68

regional analysis (mainly using PDE/semigroup approaches)

[El Jai et al. 2009] Systèmes dynamiques : Analyse régionale des systèmes linéaires distribués, PUP

port-Hamiltonian approach

[Duindam et al. 2009] Modeling and control of complex physical systems: the Port-Hamiltonian approach, Springer-Verlag

Simple examples and basic ideas about the dynamics and boundary conditions in DPS

Shallow water flows

Control problems

Hyperbolic example (1/2)

The telegrapher's equation

$$\frac{\partial^2 V}{\partial t^2}(t,x) = \frac{1}{\gamma I} \frac{\partial^2 V}{\partial x^2}(t,x) - \frac{r}{I} \frac{\partial V}{\partial t}(t,x)$$

with

- γ , the lineic capacitance (farads per unit length)
- *I*, the lineic inductance (henries per unit length)
- r, the lineic resistance (ohms per unit length)

$$\frac{1}{\sqrt{\gamma l}}$$
, the propagation speed

Introduction	Basics
	000000000000000000000000000000000000000

Shallow water flows

Control problems

Hyperbolic example (2/2)

$$\frac{\partial^2 V}{\partial t^2} = \frac{1}{\gamma I} \frac{\partial^2 V}{\partial x^2} - \frac{r}{I} \frac{\partial V}{\partial t}$$

The solution with initial impulse in x = 0 (unbounded spatial domain):

$$V(t,x) = e^{\frac{-rt}{2l}} I_0\left(\frac{r}{2l}\sqrt{t^2 - \gamma lx^2}\right)$$

where l_0 is some modified Bessel's function [Courant & Hilbert, vol. 2]

- compact support
- finite propagation speed $c = \in \sqrt{\gamma l}$
- shocks (no regularization)

Shallow water flows

Control problems

Parabolic example (1/2)

Jean Baptiste Joseph Fourier (1768-1830)

The heat equation

$$\frac{\partial \theta}{\partial t}(t,x) = \frac{D_t}{\rho C_{\rho}} \frac{\partial^2 \theta}{\partial x^2}(t,x)$$

with

- D_t , the thermal conductivity $[J s^{-1} m^{-1} K^{-1}]$
- ρ , the lineic mass [kg m⁻¹]
- C_p , the specific heat capacity $[J kg^{-1}K^{-1}]$

•
$$k := \frac{D_t}{\rho C_p}$$
, the thermal diffusivity $[m^2 s^{-1}]$

Local models

Shallow water flows

Control problems

Parabolic example (2/2)

$$\frac{\partial\theta}{\partial t} = k \frac{\partial^2\theta}{\partial x^2}$$

The solution with initial impulse in x = 0 (unbounded spatial domain):

$$\theta(t,x) = \sqrt{\frac{k}{4\pi t}} e^{-\frac{kx^2}{4t}}$$

- unbounded support for the solution (t > 0)
- infinite propagation speed $c = \in \sqrt{\gamma l}$
- no shocks (regularization/damping)

Introduction	Basics	Local models	Shallow water flows	Co
	000000000000000000000000000000000000000			00

Elliptic example

The Laplace equation for the potential

$$\frac{\partial^2 V}{\partial y^2}(y,x) + \frac{\partial^2 V}{\partial x^2}(y,x) = 0$$

with "initial" condition

$$V(0,x) = rac{1}{\epsilon + x^2} \ orall x \in \mathbb{R}$$

has solution

$$V(y,x) = \operatorname{Re}\left(rac{1}{\epsilon + (x + iy)^2}
ight)$$

Potential
$$V(x, \bar{y})$$

along the $y = \bar{y}$ axis
 $y = \bar{y} = \frac{\pm 1}{\sqrt{\epsilon}}$

 singularities may arise in the *y* direction from smooth profiles (V(x,0))

Pierre Simon Laplace (1749-1827)

ntrol problems

Shallow water flows

Control problems

Classification of second order PDEs (1/2)

Let us consider a PDE of the form

$$a\frac{\partial^2 z}{\partial x^2}(x,y) + 2b\frac{\partial^2 z}{\partial x \partial y}(x,y) + c\frac{\partial^2 z}{\partial y^2}(x,y) + d = 0$$

where a, b, c, d may depend on $x, y, z, \frac{\partial z}{\partial x}$ and $\frac{\partial z}{\partial y}$. Then using a change of variables

$$\begin{bmatrix} X \\ Y \end{bmatrix} = \begin{bmatrix} \alpha & \beta \\ \gamma & \delta \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$

The PDE reduces to

$$A\frac{\partial^2 z}{\partial x^2}(x,y) + C\frac{\partial^2 z}{\partial y^2}(x,y) + D = 0$$

where A, C, D may depend on $X, Y, z, \frac{\partial z}{\partial X}$ and $\frac{\partial z}{\partial Y}$.

Local models

Shallow water flows

Control problems

Classification of second order PDEs (2/2)

• hyperbolic form: $AC < 0 \Leftrightarrow \det \begin{vmatrix} a & b \\ c & d \end{vmatrix} < 0$ Wave equation: $\frac{\partial^2 z}{\partial t^2}(t,x) - c^2 \frac{\partial^2 z}{\partial x^2}(t,x) = 0$ • elliptic form $AC > 0 \Leftrightarrow det \begin{vmatrix} a & b \\ c & d \end{vmatrix} > 0$ Laplace equation: $\frac{\partial^2 z}{\partial x^2}(x, y) + \frac{\partial^2 z}{\partial v^2}(y, x) = 0$ • parabolic form $AC = 0 \Leftrightarrow \det \begin{vmatrix} a & b \\ c & d \end{vmatrix} = 0$ Heat equation: $\mathbf{0} \frac{\partial^2 z}{\partial t^2} + k \frac{\partial^2 z}{\partial x^2}(t, x) - \frac{\partial z}{\partial t}(t, x) = 0$

Remark: Same ideas apply for second order PDEs with *N* independent variables

Shallow water flows

Control problems

Boundary conditions, the wave equation example (1/5)

1D wave equation - **unbounded** spatial domain $x \in \mathbb{R}$

$$\begin{array}{ll} \text{state equation:} & \frac{\partial^2 z}{\partial t^2} = c^2 \frac{\partial^2 z}{\partial x^2} \\ \text{initial conditions:} & \frac{z(x,0) = z_0(x)}{\frac{\partial z}{\partial t}(x,0) = z_1(x)} & \forall x \in \mathbb{R} \end{array}$$

Jean Le Rond D'Alembert (1717-1783)

where z_0 and z_1 are smooth position and velocity profiles

D'Alembert general solution - travelling waves

$$z(x,t) = \phi(x - ct) + \psi(x + ct)$$

where $\phi(\cdot)$ and $\psi(\cdot)$ arbitrary smooth functions

Local models

Shallow water flows

Control problems

Boundary conditions, the wave equation example (2/5)

With position and velocity initial conditions

$$\begin{cases} z_0(x) = \phi(x) + \psi(x) \\ z_1(x) = -c\phi'(x) + c\psi'(x) \end{cases}$$

one gets waveform solutions

$$\begin{cases} \phi(\mathbf{x}) = z_0(\mathbf{x}) - \psi(\mathbf{x}) \\ \psi(\mathbf{x}) = \int_0^{\mathbf{x}} \frac{1}{2c} \left[z_1(\xi) + c \frac{dz_0}{d\xi}(\xi) \right] d\xi + \mathbf{A} \end{cases}$$

hence the unique solution

$$z(x,t) = z_0(x - ct) + \frac{1}{2c} \int_{x - ct}^{x + ct} \left[z_1(\xi) + c \frac{dz_0}{d\xi}(\xi) \right] d\xi$$

For instance, the initial conditions $z(x, 0) = z_0(x)$ and $\partial_t z(x, 0) \equiv 0$ gives

$$z(x,t) = \frac{1}{2}z_0(x-ct) + \frac{1}{2}z_0(x+ct)$$

Shallow water flows

Control problems

Boundary conditions, the wave equation example (3/5)

1D wave equation - **bounded** spatial domain $x \in [0, L]$

state equation:
$$\frac{\partial^2 z}{\partial t^2} = c^2 \frac{\partial^2 z}{\partial x^2}$$

initial conditions:
$$\begin{cases} z(x,0) = z_0(x) & \forall \mathbf{x} \in [0, \mathbf{L}] \\ \frac{\partial z}{\partial t}(x,0) = z_1(x) & \forall \mathbf{x} \in [0, \mathbf{L}] \end{cases}$$

Vibrating string attached at both ends

boundary conditions (Dirichlet):
$$\begin{cases} z(0,t) = 0 & \forall t \ge 0 \\ z(t,t) = 0 & \forall t \ge 0 \end{cases}$$

Shallow water flows

Control problems

Boundary conditions, the wave equation example (4/5)

The initial conditions define the waveform solutions

$$\begin{cases} \phi(x) = z_0(x) - \psi(x) \\ \psi(x) = \int_0^x \frac{1}{2c} \left[z_1(\xi) + c \frac{dz_0}{d\xi}(\xi) \right] d\xi + A \end{cases}$$

only for $x \in [0, L]$ but the **boundary conditions** read

$$z(0,t) = 0 = \phi(-ct) + \psi(+ct)$$

$$z(L,t) = 0 = \phi(L-ct) + \psi(L+ct)$$

and allow to extend the waveforms ϕ and ψ and the computation of

$$z(x,t) = \phi(x - ct) + \psi(x + ct)$$

for any time $t \ge 0$ and position $x \in [0, L]$ including those with

 $\mathbf{x} - \mathbf{ct} < \mathbf{0}$ or $\mathbf{x} + \mathbf{ct} > \mathbf{L}$

Local models

Shallow water flows

Control problems

Boundary conditions, the wave equation example (5/5)

- **unbounded spatial domain** $x \in \mathbb{R}$: initial conditions given in $[0, \infty)$ allows to predict the behaviour in [0, L] for all time t > 0
- bounded spatial domain x ∈ [0, L]: boundary conditions are required to predict the behaviour outside 0 ≤ x − ct < x + ct ≤ L

some heuristic rules for boundary conditions (1D problems)

- as much as the higher order of derivation N_x w.r.t. x
- involving derivatives up to order N_x 1
- must propagate through the considered spatial domain

Local models

Shallow water flows

Control problems

Boundary conditions, the heat equation example (1/2)

The heat equation

$$\frac{\partial \theta}{\partial t}(t,x) = k \frac{\partial^2 \theta}{\partial x^2}(t,x)$$

with

• initial condition:

$$\theta(x,0) = \theta_0(x) \ \forall x \in [0,L]$$

• boundary conditions (Neuman):

$$\frac{\partial \theta}{\partial x}(0,t) = 0$$
$$\frac{\partial \theta}{\partial x}(L,t) = 0$$

Local models

Shallow water flows

Control problems

Boundary conditions, the heat equation example (2/2)

Assuming symmetry the heat equation in polar coordinates reads:

$$\frac{\partial \theta}{\partial t}(r,t) = k\Delta\theta(r,t) = k\frac{1}{r}\frac{\partial}{\partial r}\left(r\frac{\partial\theta}{\partial r}(r,t)\right)$$

Initial condition:

$$\theta(0,x)=0 \ \forall r\in[0,R]$$

Boundary condition (Neuman):

$$\frac{\partial \theta}{\partial r}(R,t) = 0 \ \forall t \ge 0$$

Hidden boundary condition: assuming smoothness and symmetry

$$\frac{\partial \theta}{\partial r}(0,t) = 0 \ \forall t \ge 0$$

Shallow water flows

Control problems

State space definition (1/2)

The heat equation

$$\frac{\partial \theta}{\partial t}(t,x) = k \frac{\partial^2 \theta}{\partial x^2}(t,x)$$

with Neuman boundary conditions:

$$\frac{\partial \theta}{\partial x}(0,t) = 0$$
$$\frac{\partial \theta}{\partial x}(L,t) = 0$$

The heat equation

$$\frac{\partial \theta}{\partial t}(t,x) = k \frac{\partial^2 \theta}{\partial x^2}(t,x)$$

with **Dirichlet** boundary conditions:

$$\begin{array}{rcl} \theta(0,t) &=& 0\\ \theta(L,t) &=& 0 \end{array}$$

Shallow water flows

Control problems

State space definition (2/2)

• The initial state (temperature profile) at time $t_0 = 0$

$$\theta_0: [0, L] \to \mathbb{R}: x \mapsto \theta_0(x)$$

allows to compute the **trajectory** $\theta(t)$ (solution) for t > 0

• The state $\theta(t)$ is the (unique) solution of both:

- the state equation $\frac{\partial \theta}{\partial t}(t, x) = k \frac{\partial^2 \theta}{\partial x^2}(t, x)$
- the boundary conditions $\begin{cases} \frac{\partial \theta}{\partial x}(0,t) = 0\\ \frac{\partial \theta}{\partial x}(L,t) = 0 \end{cases}$
- The state space, e.g.

$$Z := H_2^0\left([0,L]\right) = \left\{ h: [0,L] \to \mathbb{R} \left| \begin{array}{c} h, \frac{dh}{dx}, \frac{d^2h}{dx^2} \in L_2\left([0,L]\right) \\ \frac{dh}{dx}(0) = 0 \\ \frac{dh}{dx}(L) = 0 \end{array} \right\} \right\}$$

is equiped with some relevant structure (e.g. inner product and/or norm)

Shallow water flows

Control problems

Control systems (1/3)

$$\begin{aligned} \frac{\partial \theta}{\partial t}(t,x) &= k \frac{\partial^2 \theta}{\partial x^2}(t,x) + \alpha(\theta_{\omega}(T_{cool}(t),Q_{cool}(t),x) - \theta(t,x)) \\ T_{\omega}(t) &= \frac{1}{|\omega|} \int_{\omega} \theta(t,x) \, dx \end{aligned}$$

with finite rank bounded linear output $T_{\omega}(t)$ and distributed control

$$\theta_{\omega}(t,x) = \theta_{\omega}(T_{cool}(t), Q_{cool}(t), x) \text{ with } (T_{cool}(t), Q_{cool}(t)) \in \mathbb{R}^{2}$$

and **boundary** control/measurement:

$$-D_t \frac{\partial \theta}{\partial x}(0,t) = P_{heat}(t) =: u_{\partial}(t) \text{ and } y_{\partial}(t) = \theta(t,L)$$

Shallow water flows

Control problems

Control systems (2/3)

$$\frac{\partial \theta}{\partial t}(t,x) = k \frac{\partial^2 \theta}{\partial x^2}(t,x) + \alpha(T_{wall}(t,x) - \theta(t,x))$$
$$= k \frac{\partial^2 \theta}{\partial x^2}(t,x) - \alpha \theta(t,x) + Bu(t)$$

with finite rank bounded linear distributed control:

$$B: U := \mathbb{R} \to Z: u(t) \mapsto (Bu)(t, x) := \psi(x)u(t)$$

and

$$\|Bu(t)\|_{Z} = |u(t)| \|\psi(\cdot)\|_{Z} \Rightarrow \|B\|_{\mathcal{L}(U,Z)} = \|\psi\|_{Z} < \infty$$

Remark: spatial distribution of the control action often has an "intuitive" physical meaning

Shallow water flows

Control problems

Control systems (3/3)

Assume $Z \subset L_2([0, L])$, then the output operator

$$C: Z \to Y := \mathbb{R}: z \mapsto \frac{1}{|\omega|} \int_{\omega} z(x) dx$$

satisfies

$$|Cz| = \frac{1}{|\omega|} \left| \int_{\omega} z(x) dx \right|$$

$$\leq \frac{1}{2\epsilon} \int_{\omega} |z(x)| dx$$

$$= \int_{[0,L]} 1_{\omega}(x) |z(x)| dx$$

$$\leq ||1_{\omega}||_{L_2([0,L])} \cdot ||z||_{L_2([0,L])}$$

Hence

$$\|C\|_{\mathcal{L}(L_2,\mathbb{R})} \leq \frac{1}{\sqrt{2\epsilon}} < \infty$$

Shallow water flows

Control problems

Homogenization (1/3)

We consider the heat equation

$$\frac{\partial \theta}{\partial t}(t,x) = \mathcal{A}\theta(t,x) = k \frac{\partial^2 \theta}{\partial x^2}(t,x)$$

with **boundary control**

$$\mathcal{B}\theta := \left(\begin{array}{c} \frac{\partial\theta}{\partial x}(0,t)\\ \frac{\partial\theta}{\partial x}(L,t)\end{array}\right) = u_{\partial}(t) = \left(\begin{array}{c} u_{\partial}^{0}(t)\\ u_{\Delta}^{L}(t)\end{array}\right)$$

Homogenization (2/3)

The change of state variable

$$z(t,x) := \theta(t,x) - B(x)u_{\partial}(t)$$

with $B : [0, L] \rightarrow \mathbb{R}^2 : x \mapsto [B_1(x); B_2(x)]$ such that

 $\mathcal{B}B(x)u_{\partial} = u_{\partial}$

transforms the original boundary control problem into

$$\frac{\partial z}{\partial t}(t,x) = \mathcal{A}z(t,x) + \underbrace{\mathcal{A}B(x)u_{\partial}(t) - B(x)\dot{u}_{\partial}(t)}_{\overline{u}(t,x)}$$
$$\frac{\partial z}{\partial x}(0,t) = 0$$
$$\frac{\partial z}{\partial x}(L,t) = 0$$

with finite rank distributed control $\tilde{\boldsymbol{u}}(t,\boldsymbol{x})$ and homogeneous boundary conditions

Shallow water flows

Control problems

Homogenization (3/3)

In the previous heat equation example

$$B(x) = [B_1(x); B_2(x)] := \left[x\left(1 - \frac{x}{2L}\right) ; \frac{x^2}{2L}\right]$$

gives

$$\mathcal{B}\mathcal{B}(x)u_{\partial} = \begin{pmatrix} \left. \frac{\partial \mathcal{B}(x)}{\partial x} \right|_{x=0} \\ \left. \frac{\partial \mathcal{B}(x)}{\partial x} \right|_{x=L} \end{pmatrix} u_{\partial} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} u_{\partial} = u_{\partial}$$

and $z := \theta - Bu_{\partial}$ transforms the original boundary control problem into

$$\frac{\partial z}{\partial t}(t,x) = k \frac{\partial^2 z}{\partial x^2}(t,x) + \left[\frac{-1}{L};\frac{+1}{L}\right] \left[\begin{array}{c} u_{\partial}^0\\ u_{\partial}^L\end{array}\right] - \left[x\left(1-\frac{x}{2L}\right);\frac{x^2}{2L}\right] \left[\begin{array}{c} \dot{u}_{\partial}^0\\ \dot{u}_{\partial}^L\end{array}\right]$$
$$\frac{\partial z}{\partial x}(0,t) = 0$$
$$\frac{\partial z}{\partial x}(L,t) = 0$$

and $u_{\partial}^{L}(t) \equiv 0$ (homogeneous boundary condition at the isolated end x = L)

Local models

Shallow water flows

Control problems

Building DPS models from local lumped balance equations in infinitesimal volumes
Shallow water flows

Control problems

The telegrapher's equation example (1/4)

Balance equations (Kirchoff's laws):

$$u(x + \delta x, t) = u(x, t) - u_r - u_l$$

$$i(x + \delta x, t) = i(x, t) - i_{\gamma} - i_g$$

Constitutive equations:

$$u_{r} = r(x) \,\delta x \,i \,(x + \delta x, t)$$

$$u_{l} = \frac{\partial}{\partial t} \left(l(x) \,\delta x \,i \,(x + \delta x, t) \right)$$

$$i_{g} = g(x) \,\delta x \,u(x, t)$$

$$u_{l} = \frac{\partial}{\partial t} \left(\gamma(x) \,\delta x \,u(x, t) \right)$$

Shallow water flows

Control problems

The telegrapher's equation example (2/4)

Balance equations:

$$u(x,t) + \frac{\partial u}{\partial x}(x,t)\delta x + o(\delta x) = u(x,t) - r\,\delta x\,i(x+\delta x,t) - l\,\delta x\frac{\partial i}{\partial t}(x+\delta x,t)$$
$$i(x,t) + \frac{\partial i}{\partial x}(x,t)\delta x + o(\delta x) = i(x,t) - g\,\delta x\,u(x,t) - \gamma\,\delta x\frac{\partial u}{\partial t}(x,t)$$

Considering $\delta x \rightarrow 0$:

$$\frac{\partial u}{\partial x}(x,t) = -r(x)i(x,t) - l(x)\frac{\partial i}{\partial t}(x,t)$$
$$\frac{\partial i}{\partial x}(x,t) = -g(x)u(x,t) - \gamma(x)\frac{\partial u}{\partial t}(x,t)$$
38/72

Shallow water flows

Control problems

The telegrapher's equation example (3/4)

In the uniform case (i.e. I(x) = I, $\gamma(x) = \gamma$, r(x) = r, g(x) = g), differentiating these balance equations, one gets:

$$l\gamma \frac{\partial^2 u}{\partial t^2}(x,t) - \frac{\partial^2 u}{\partial x^2}(x,t) + (r\gamma + gl)\frac{\partial u}{\partial t}(x,t) + gru(x,t) = 0$$

$$l\gamma \frac{\partial^2 i}{\partial t^2}(x,t) - \frac{\partial^2 i}{\partial x^2}(x,t) + (r\gamma + gl)\frac{\partial i}{\partial t}(x,t) + gri(x,t) = 0$$

which are **hyperbolic** second order PDEs since $-l\gamma < 0$.

For r = g = 0 we get: $\frac{\partial^2 u}{\partial t^2}(x,t) = c^2 \frac{\partial^2 u}{\partial x^2}(x,t)$ with

 $c=rac{1}{\sqrt{l\gamma}}$

Local models

Shallow water flows

Control problems

The telegrapher's equation example (4/4)

Interactions with the environment (boundary conditions):

boundary x = 0

$$u(0,t) = e(t)$$

$$\begin{cases} \frac{dQ_{out}}{dt}(t) = i(L, t) \\ u(L, t) = R_{out}i(L, t) + \frac{Q_{out}(t)}{C_{out}} \\ Q_{out}(0) = Q_0 \end{cases}$$

 \rightarrow the transmission line may be connected to any other kind of lumped (or distributed) active or passive circuit

Shallow water flows

Control problems

The reaction - advection - dispersion equation (1/5)

Mass balance equation for the $[x, x + \delta x]$ "element":

$$\frac{\partial}{\partial t} \left[S \,\delta x \, C(x,t) \right] = \left[FC(x,t) - FC(x+\delta x,t) \right] \text{ advection} \\ + \left[-D_m S \frac{\partial C}{\partial x}(x,t) + D_m S \frac{\partial C}{\partial x}(x+\delta x,t) \right] \text{ dispersion} \\ + S \,\delta x \, r \left(C(x,t) \right) \text{ reaction}$$

with $S[m^2]$ the cross section area, $D_m[m^2s^{-1}]$ the axial dispersion coefficient and $r(C)[kgs^{-1}m^{-3}]$ the reaction rate.

Local models

Shallow water flows

 $\sim -$

Control problems

The reaction - advection - dispersion equation

(2/5) Using again Taylor's expansions:

$$FC(x,t) - FC(x + \delta x, t) = -F\frac{\partial C}{\partial x}(x,t)\delta x + o(\delta x)$$

$$-D_m S\frac{\partial C}{\partial x}(x,t) + D_m S\frac{\partial C}{\partial x}(x + \delta x, t) = +D_m S\frac{\partial^2 C}{\partial x^2}(x,t)\delta x + o(\delta x)$$

one gets when $\delta x \rightarrow 0$:

$$\frac{\partial}{\partial t} \left[S C(x,t) \right] = -F \frac{\partial C}{\partial x}(x,t) + D_m S \frac{\partial^2 C}{\partial x^2}(x,t) + S r \left(C(x,t) \right)$$

Reaction-advection-dispersion parabolic equation

$$\frac{\partial C}{\partial t}(x,t) = -v \frac{\partial C}{\partial x}(x,t) + D_m \frac{\partial^2 C}{\partial x^2}(x,t) + r(C(x,t))$$

with $v := \frac{F}{S} [ms^{-1}]$ the superficial velocity

Local models

Shallow water flows

Control problems

The reaction - advection - dispersion equation (3/5)

Mass conservation at the inlet:

$$FC(0^+, t) - D_m S \frac{\partial C}{\partial x}(0^+, t) = FC_{in}(t)$$

Thermodynamical equilibrium at the outlet:

$$\frac{\partial C}{\partial x}(L^-,t) = 0$$

Danckwertz boundary conditions

$$D_{m}\frac{\partial C}{\partial x}(0^{+},t) = v\left(C(0^{+},t)-C_{in}(t)\right)$$

$$\frac{\partial C}{\partial x}(L^{-},t) = 0$$

Shallow water flows

Control problems

The reaction - advection - dispersion equation (4/5)

Linear reaction - advection - dispersion equation

Assume e.g. a radioactive tracer with a decay $r(C) := -\lambda C$, then:

$$\frac{\partial C}{\partial t}(x,t) = -v \frac{\partial C}{\partial x}(x,t) + D_m \frac{\partial^2 C}{\partial x^2}(x,t) - \lambda C(x,t)$$

With the change of state variable $Z(t, x) := C(t, x)e^{\lambda t}$:

$$\frac{\partial Z}{\partial t}(x,t) = e^{\lambda t} \left(\frac{\partial C}{\partial t}(x,t) + \lambda \left(C(x,t) \right) \right) = -v \frac{\partial Z}{\partial x}(x,t) + D_m \frac{\partial^2 Z}{\partial x^2}(x,t)$$

With $x := \xi + v\tau$ and $t = \tau$, assume $\tilde{Z}(\xi, \tau) := Z(\xi + v\tau, \tau) = Z(x, t)$:

$$\frac{\partial \tilde{Z}}{\partial \tau}(\xi,\tau) = \frac{\partial Z}{\partial t}(\xi + v\tau,\tau) + v\frac{\partial Z}{\partial x}(\xi + v\tau,\tau) = D_m \frac{\partial^2 Z}{\partial x^2}(\xi + v\tau,\tau) = D_m \frac{\partial^2 \tilde{Z}}{\partial \xi^2}(\xi,\tau)$$

Shallow water flows

Control problems

The reaction - advection - dispersion equation (5/5)

Non linear transport-reaction-diffusion

Assume a biological tracer with a with logistic growth rate $r(C) := rC \left(1 - \frac{C}{K}\right)$ then:

$$\frac{\partial C}{\partial t}(x,t) = -v \frac{\partial C}{\partial x}(x,t) + D_m \frac{\partial^2 C}{\partial x^2}(x,t) + rC\left(1 - \frac{C}{K}\right)$$

multiple species reaction $aA + bB \rightleftharpoons cC + dD$

Assume reaction kinetics rate r(A, B), then:

$$\frac{\partial A}{\partial t}(x,t) = -v \frac{\partial A}{\partial x}(x,t) + D_m \frac{\partial^2 A}{\partial x^2}(x,t) - a r (A,B)$$

$$\frac{\partial B}{\partial t}(x,t) = -v \frac{\partial B}{\partial x}(x,t) + D_m \frac{\partial^2 B}{\partial x^2}(x,t) - b r (A,B)$$

Local models

Shallow water flows

Control problems

The reaction - advection - dispersion equation

Examples of reaction kinetics:

logistic growth reaction rate (saturation)

$$r(X) = \rho\left(1 - \frac{X}{K}\right)X$$

where X is the population concentration

• Monod reaction rate (biochemical reaction) for $X + k_1 S \rightarrow k_2 X$

$$r(S,X) = \frac{\mu_{max}S}{K_S + S}X$$

with S and X the limiting substrate and biomass concentrations

• law of mass action for chemical reactions $aA + bB \rightleftharpoons cC + dD$

$$r(A,B)=kA^{a}B^{b}$$

with for instance $k = k_0 e^{\frac{-E}{RT}}$ (Arrhenius law)

Shallow water flows

Control problems

Non isothermal reactor (1/3)

• external heat transfer (cooling jacket)

$$U = -D\,\delta x\,R_{th}\,(T(x,t) - T_{cool}(t))$$

with R_{th} and D the wall heat transfer coefficient and diameter ($S = \frac{\pi D^2}{4}$) • reaction heat

 $S \delta x r (C(x,t), T(x,t)) \Delta H_R$

with $\Delta H_R [J kg^{-1}]$ the reaction enthalpy ($\Delta H_R < 0$ for exothermic reaction) and $r(C, T) [kg s^{-1}m^{-3}]$ the reaction rate.

Shallow water flows

Control problems

Non isothermal reactor (2/3)

Heat balance equation for the $[x, x + \delta x]$ "element":

$$\frac{\partial}{\partial t} \left[\rho C_p S \,\delta x \, T(x,t) \right] = -F \rho C_p \frac{\partial T}{\partial x}(x,t) \,\delta x \text{ convection} + D_{th} S \frac{\partial^2 T}{\partial x^2}(x,t) \,\delta x \text{ dispersion} + S \,\delta x \,\Delta H_R r \,(C,T) \text{ reaction heat} + D \,\delta x \,R_{th} (T_{cool}(t) - T(x,t)) \text{ exchange with wall}$$

with ρ [kg m⁻³] the specific mass and C_{ρ} [J K⁻¹ kg⁻¹] the specific heat.

Mass and heat balance equations

$$\frac{\partial C}{\partial t} = -v \frac{\partial C}{\partial x} + D_m \frac{\partial^2 C}{\partial x^2} + r(C, T)$$

$$\frac{\partial T}{\partial t} = -v \frac{\partial T}{\partial x} + \frac{D_{th}}{\rho C_p} \frac{\partial^2 T}{\partial x^2} + \frac{\Delta H_R}{\rho C_p} r(C, T) + \frac{4R_{th}}{\pi D \rho C_p} (T_{cool}(t) - T)$$

Local models

Shallow water flows

Control problems

Non isothermal reactor (3/3)

- Mass and heat (?) conservation at the inlet
- Thermodynamical equilibrium at the outlet

Danckwertz boundary conditions

$$D_{m} \frac{\partial C}{\partial x} (0^{+}, t) = \mathbf{v} \left(C(0^{+}, t) - C_{in}(t) \right)$$

$$D_{th} \frac{\partial T}{\partial x} (0^{+}, t) = \mathbf{v} \left(T(0^{+}, t) - T_{in}(t) \right)$$

$$\frac{\partial C}{\partial x} (L^{-}, t) = 0$$

$$\frac{\partial T}{\partial x} (L^{-}, t) = 0$$

Local models

Shallow water flows

Control problems

Some examples of free surface shallow water flow models

Local models

Shallow water flows

Control problems

Free surface fluid flow model (1/5)

- 1D assumption: average velocity field v(x, t) only depends on longitudinal coordinate x
- free surface flow delimited by boundary conditions (gates, weirs, junctions, etc.)
- gravity forces, waveform restoring forces, friction forces, eventually dispersion

Shallow water flows

Control problems

Free surface fluid flow model (2/5)

Mass balance equation

$$\frac{\partial}{\partial t} \left[\rho S(x,t) \delta x \right] = +\rho S(x,t) v(x,t) - \rho S(x+\delta x,t) v(x+\delta x,t) \\ = -\frac{\partial}{\partial x} \left(\rho S(x,t) v(x,t) \right) + o\left(\delta x \right)$$

$$\frac{\partial S}{\partial t}(x,t) = -\frac{\partial Q}{\partial x}(x,t) \text{ or } \frac{\partial h}{\partial t} = -\frac{\partial (hv)}{\partial x}$$

Shallow water flows

Control problems

Free surface fluid flow model (3/5)

Momentum balance equation

$$\frac{\partial}{\partial t} \left[\rho S(x,t) v(x,t) \delta x \right] = \left[\rho Q(x,t) v(x,t) - \rho Q(x+\delta x,t) v(x+\delta x,t) \right] \\ + \text{gravity} + \text{pressure} + \text{external friction} \\ + \text{internal dissipation} + \text{wave restoring forces} \\ + \text{etc.}$$

Local models

Shallow water flows

Control problems

Free surface fluid flow model (4/5)

Force resulting from the "hydrostatic" pressure distribution

$$P(x,t) = \rho gh(x,t) \Rightarrow F_{\rho} = -S(x,t) \,\delta x \, \frac{\partial P}{\partial x}(x,t) = -\rho g S(x,t) \frac{\partial h}{\partial x}(x,t) \,\delta x$$

"Resulting" gravity force (small slope assumption)

$$F_g = \sin(\phi) \rho S(x,t) \, \delta x \, g \simeq - \frac{dz_f}{dx}(x) \rho S(x,t) \, \delta x \, g$$

Local models

Shallow water flows

Control problems

Free surface fluid flow model (5/5)

"External" friction forces (Manning Strickler formulae)

$$F_{f}(x,t) = -\rho S(x,t) \,\delta x \, g \underbrace{n^{2} \frac{Q(x,t)|Q(x,t)|}{S^{2}(x,t)R^{4/3}(x,t)}}_{\text{friction slope}}$$

"Internal" dissipation (empirical dispersion/mixing)

$$F_{\nu}(x,t) = \rho S(x,t) \,\delta x D_{\nu} \frac{\partial^2 v}{\partial x^2}(x,t)$$

Local models

Shallow water flows

Control problems

Example: the Saint-Venant or Shallow Water Equations (SWE)

hydrostatic pressure distribution, gravity and Manning-Strickler friction

SWE in (Q, S) variables (waterbed profile S = S(h, x))

$$\begin{array}{lll} \frac{\partial S}{\partial t} & = & -\frac{\partial Q}{\partial x} \\ \frac{\partial Q}{\partial t} & = & -\frac{\partial}{\partial x} \left[\frac{Q^2}{S} \right] - gS \left[\frac{\partial h}{\partial x} + \frac{dz_f}{dx} + n^2 \frac{Q|Q|}{S^2 R^{4/3}} \right] \end{array}$$

SWE in (h, v) variables (rectangular waterbed S = Bh and Q = Bhv)

$$\frac{\partial h}{\partial t} = -\frac{\partial (hv)}{\partial x}$$

$$\frac{\partial v}{\partial t} = -\frac{\partial}{\partial x} \left[\frac{v^2}{2} \right] + g \left[\frac{\partial h}{\partial x} + \frac{dz_f}{dx} + n^2 \frac{v|v|}{\left(\frac{Bh}{B+2h}\right)^{4/3}} \right]$$

Shallow water flows

Control problems

Example: the Burger's Equation (1/3)

• Pressure gravity and exterior friction forces are neglected

For a rectangular waterbed

$$\frac{\partial h}{\partial t} = -\frac{\partial (hv)}{\partial x} \frac{\partial v}{\partial t} = -\frac{\partial}{\partial x} \left[\frac{v^2}{2} \right] + D_v \frac{\partial^2 v}{\partial x^2}$$

Inviscid Burger's equation (dispersion is neglected)

$$\frac{\partial h}{\partial t} = -\frac{\partial (hv)}{\partial x}$$
$$\frac{\partial v}{\partial t} = -\frac{\partial}{\partial x} \left[\frac{v^2}{2} \right]$$

Shallow water flows

Control problems

Example: the Burger's Equation (2/3)

- model for traffic flow of cars on a highway
- density $\rho(x, t)$ and velocity v(x, t) of cars in $x \in \mathbb{R}$ at time $t \ge 0$
- the cars conservation equations reads

$$\frac{\partial \rho}{\partial t} = -\frac{\partial J}{\partial x}(x, t) \text{ with } J = \rho v(\rho) = \rho v_{max} \left(1 - \frac{\rho}{\rho_{max}}\right)$$

• the solution exhibits shock formation (traffic jam) and travelling shocks

Shallow water flows

Control problems

Example: the Burger's Equation (3/3)

Assume *L* and τ are such that $\frac{L}{\tau} = v_{max}$, then the change of variables

$$\tilde{x} := rac{x}{L}$$
 $\tilde{t} := rac{t}{\tau}$ $u := 1 - rac{2\rho}{
ho_{max}}$

transforms the previous equation into the Burger equation

$$\frac{\partial u}{\partial \tilde{t}} = -\frac{\partial}{\partial \tilde{x}} \left[\frac{u^2}{2} \right] \quad \text{or} \quad \frac{\partial u}{\partial t} = -\frac{\partial}{\partial x} \left[\frac{u^2}{2} \right]$$

whose general solution may be obtained by the method of characteristics:

$$u(x+tu_0(x),t)=u_0(x)$$

Shallow water flows

Control problems

Others shallow water models

• Korteweg - De Vries (Burger's equation with "wave restoring" force)

$$\frac{\partial v}{\partial t} = -\frac{\partial}{\partial x} \begin{bmatrix} \frac{v^2}{2} + \frac{\omega \partial^2 v}{\partial x^2} \\ \text{steepening spreading} \end{bmatrix}$$

• **Boussinesq** (SWE with supplementary "dispersive" term)

$$\frac{\partial h}{\partial t} = -\frac{\partial (hv)}{\partial x} + \frac{h^3}{6} \frac{\partial^3 v}{\partial x^3}$$
$$\frac{\partial v}{\partial t} = -\frac{\partial}{\partial x} \left[\frac{v^2}{2} + gh \right] + \frac{h^2}{2} \frac{\partial}{\partial t} \frac{\partial^2 v}{\partial x^2}$$

Shallow water flows

Control problems

Boundary conditions for shallow water equations

Submerged sluice gate

 $Q_{1}(L,t) = Q_{2}(0,T) = \alpha B\theta(t) \sqrt{2g(h_{1}(L,t) - h_{2}(0,T))}$

Free weir

$$Q_1(L,t) = \tilde{\alpha}Bh_1(L,t)\sqrt{2gh_1(L,t)}$$

Y junction

$$Q_1(L, t) + Q_2(L, t) = Q_3(0, t)$$

$$h_1(L, t) = h_2(L, t) = h_3(0, t)$$

Local models

Shallow water flows

Control problems

Example of control problems for distributed parameters systems

Introduction	Basics

Shallow water flows

Control problems

Exact controllability (1/2)

$$\frac{\partial h}{\partial t}(x,t) = -\frac{\partial}{\partial x} (h(x,t)v(x,t)) \frac{\partial v}{\partial t}(x,t) = -\frac{\partial}{\partial x} \left(gh(x,t) + \frac{v^2(x,t)}{2} \right)$$

Boundary control:

$$\begin{aligned} Q(0,t) &:= B(hv)|_{x=0} = \alpha u_1(t) \sqrt{h_{up}(t) - h(0,t)} \\ Q(L,t) &:= B(hv)|_{x=L} = \alpha u_2(t) \sqrt{h(L,t) - h_{down}(t)} \end{aligned}$$

Shallow water flows

Control problems

Exact controllability (2/2)

exact controllability

Assume the initial state profile is $(h_0, v_0) \in Z$. The system is exactly controllable at $(h_0, v_0) \in Z$ in time T > 0 if and only if for any admissible target state profile $(h_c, v_c) \in Z$, there exist inputs $u_1(t)$ and $u_2(t)$ admissible on [0, T] such that

$$(h(T), v(T)) \stackrel{Z}{=} (h_c, v_c)$$

where $(h(t), v(t)) \in Z$ denotes the solution for initial conditions (h_0, v_0) and inputs u_1 and u_2

Shallow water flows

Control problems

Approximate controllability

approximate controllability or weak controllability

Assume the initial state profile is $\theta_0 \in Z$. The system is **approximately controllable** at $\theta_0 \in Z$ in time T > 0 iff. for any admissible target state profile $\theta_c \in Z$ and **for any** $\epsilon > 0$ there exists an input u(t) admissible on [0, T] such that

$$\left\|\theta(T)-\theta_{c}\right\|_{Z}<\epsilon$$

where $\theta(t) \in Z$ denotes the solution

Introduction	Basics

Shallow water flows

Control problems

Regional analysis

regional controllability

Let $\omega \subset \Omega$ be some **region of interest** of the spatial domain. Let the restriction application be defined as:

$$p_{\omega}: L^2(\Omega)
ightarrow L^2(\omega): z \mapsto p_{\omega} z := \left. z \right|_{\omega}$$

The system is regionally exactly controllable on ω at $z_0 \in Z(\Omega)$ in time T > 0 iff.

for any admissible target state profile $z_c \in Z(\omega)$ there exists a control u(t) and such that

$$p_{\omega}z(T)=z_{c}$$

where $z(t) \in Z(\Omega)$ denotes the solution

Introduction	Basics

Shallow water flows

Control problems

Spreadability (1/2)

- Examples:
 - desertification / vegetation dynamics / fire spread
 - epidemies / disease spread
 - pollution / convection-diffusion
- Consider a boolean property

$$\begin{array}{rcl} \mathcal{P}: Z & \to & \{0,1\}^{\Omega} \\ z & \mapsto & (\mathcal{P}z): \Omega \to \{0,1\} \\ & & & (\mathcal{P}z)(x) = \left\{ \begin{array}{cc} 1 & \text{when } z(x) \text{ satisfies the property} \\ 0 & \text{else} \end{array} \right. \end{array}$$

Examples

- $(\mathcal{P}z)(x) = 1 \Leftrightarrow z(x) = p(x)$, with p a given profile • $(\mathcal{P}z)(x) = 1 \leftrightarrow z(x) \in K$ with K a set of constraint
- $(\mathcal{P}z)(x) = 1 \Leftrightarrow z(x) \in K$, with K a set of constraints
- Subregion $\omega_t := \{x \in \Omega \mid (\mathcal{P}z(t))(x) = 1\}$ with z(t) the solution
- Assumption: $\omega_0 \neq \emptyset$

Introduction	Basics

Shallow water flows

Control problems

Spreadability (2/2)

spreadability

The system is \mathcal{P} -spreadable from ω_0 during the time interval I := [0, T] if the family $(\omega_t)_{t \in I}$ is non decreasing:

$$\forall s, t \in I : s \leq t \Rightarrow \omega_s \subset \omega_t \text{ or } \mu(\omega_s) \leq \mu(\omega_t)$$

Otherwise it is said \mathcal{P} -resorbable

Shallow water flows

Control problems

Example stabilizing feedback

Look for static state (operator) feedback

$$\left(\begin{array}{c} h(\cdot,t) \\ v(\cdot,t) \end{array} \right) \quad \mapsto \quad u_1(t) \\ \left(\begin{array}{c} h(\cdot,t) \\ v(\cdot,t) \end{array} \right) \quad \mapsto \quad u_2(t)$$

such that

$$\left\| \left(\begin{array}{c} h(\cdot,t) - h_c(\cdot) \\ v(\cdot,t) - v_c(\cdot) \end{array} \right) \right\|_{Z} \to 0 \text{ when } t \to \infty$$

where h_c and v_c are target water level and velocity profiles

Introduction	Basics	Local models	Shallow water flows	Control problems
				00000000000

Example LQ control

Look for control signals $u_1(t)$ and $u_2(t)$, $t \in [0, T]$ which solve

$$\min_{u_1,u_2} \int_0^T \left\| \begin{bmatrix} h(t) - h_c \\ v(t) - v_c \end{bmatrix} \right\|_Q^2 + \left\| \begin{bmatrix} u_1(t) \\ u_2(t) \end{bmatrix} \right\|_B^2 dt$$

with (Q(x) > 0 a.e. in [0, L])

$$\left\| \begin{bmatrix} h(t) - h_c \\ v(t) - v_c \end{bmatrix} \right\|_Q^2 := \int_0^L \begin{bmatrix} h(t, x) - h_c(x) \\ v(t, x) - v_c(x) \end{bmatrix}^T Q(x) \begin{bmatrix} h(t, x) - h_c(x) \\ v(t, x) - v_c(x) \end{bmatrix} dx$$

and where $(h(t), v(t))^{T}$ is the solution of the SWE with sluice gates boundary conditions

Shallow water flows

Control problems

Classical control problems for DPS

Classical problems such as

- stabilization / state or output feedback control
- optimal control
- estimation / feedback observer design
- frequency-domain description and control
- reduced order control and robustness
- distributed parameters identification

may be addressed with specific techniques

Local models

Shallow water flows

Control problems

Specific control problems for DPS

Some control problems specifically arise for DPS

- actuators/sensors placement
- Iocalization (perturbations)
- regional control/observation
- spray control
- mobile sensors/actuators
- moving boundary control problems