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Outline

@ Motivation: PDE model-based simulation to PDE model-based design.
o A multiphysics example: Optimal control of crystal growth.

@ Motivation: Interface motion planning in multiphase flows.

Model predictive control - the general concept.

@ Mathematics of PDE constrained optimization for model problems — main
part of the presentation.

o Basic concepts.

o Discretization.

o Algorithms.

o Numerical analysis.

o Incorporation of state constraints.

@ Applications and further aspects (Sunday).
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Motivation

Mathematical model of a real world process available
— predict process behaviour for given inputs,

— analyse the sensitivity of the process at certain states,

Mathematical model of a real world process available
— design your process through inputs; this is optimization,

— consider the inverse problem: given observations of the system, which input
delivers the best reconstruction of the observations?. In other words: how
should | choose the input to achieve a prescribed output.

— keep your process on track; control the mathematical model so that it stays
in the vicinity of a desired state

For systems governed by PDEs the basic building block here is

Optimization with PDE constraints



UH
ifi
n

Mathematics of PDE constrained optimization
M.

Vertical gradient freeze growth - oven and crystal

VGF-Oven with coil system for the application of travelling magnetic fields, courtesy OIf Patzold
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Sectional drawing of the seed zone and the bottom
growth zone. The thermocouple arrangement is shown
in detail on the left hand side. Courtesy: H. Krause, O.
Pétzold, U. Wunderwald, M. Hermann
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Principle of VGF-growth in closed ampoules: (a) Sketch
of the growth ampoule; (b) Thermal profiles during the
process (Ts ... melting temperature). Courtesy: H.

Krause, O. Pitzold, U. Wunderwald, M. Hermann
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VGF crystal growth - subproblems

Control of solidification
Flow control (H., Ziegenbalg J. Comput. Phys.

D e = | 223, ZAMM 87, 2007; H.,
R e Pétzold, Ziegenbalg J. Crystal
S EE jj: Growth iu, 2009)
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Why optimization? And which kind of optimization?

Why optimization?

@ Large radial temperature gradients cause thermal stresses — striations in
the crystal.

@ Remedy: flat fluid-liquid interface.

Which kind of optimization?
@ Closed-loop optimization desirable. But process hard to observe.

@ Growth-system is closed — open loop (optimal) control.
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2-phase Stefan problem with flow
driven by convection and Lorentz
forces.

Interface (free boundary) is
modeled as a graph.

Free boundary motion control by
wall temperature and the Lorentz
forces.

Control goal: tracking a prescribed
evolution of the free boundary.
Achieve this goal by minimizing an
appropriate cost functional.

Express derivatives with the help
of the adjoint calculus.

Consider physical constraints on
controls and states.
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Mathematical model

Interface: T(t) = {(x, f(t,x))T;x € G}.

Oy = c’:’pAu in @7,
Su+7-Vu =C’I‘—'pAu inQ,
8V + (VV)7 — EAV+ LVp = —Fv(u—um) + A(Ac) in Q]
:fT//’Ia,—;u =up —u on X,
u =uy on [(t),
V-¥ =0 in Q,T,
Lpﬁ = %Bﬁus — %Bﬁu, on GT,

+IC +BC.
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Optimization problem

By f the desired evolution of the free boundary is denoted. The control goal
mathematically is formulated as a pde-constrained optimization problem;

o T _ 2 o
Py minrua J(F uy Ae) = [ [ (f(t,y) - f(t,y)) dydt + S(up, A;)
0G
const

2
s.t. mathematical model + traints on controls and/or states.

The functional J models the objective of reducing the mismatch between the
interface and the desired free boundary in the mean square sense.

The function f is coupled to the controls through the mathematical model.
S penalizes control costs.
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Numerical experiment, results (Implementation Stefan Ziegenbalg)

Temperature u — up (colored stripes), velocity (arrows) and free boundary
(black line) at four time instances

with optimization


../Ziegenbalg/Animationen/GaAs2008_pub3/gaAs-uv.html
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Simulation and control of multiphase flows

@ Develop numerics for hydrodynamics of multiphase flows, including efficient,
reliable, fully automatic adaptive concepts to resolve interface

@ Develop control concepts for multiphase flows

@ Use of diffuse interface approach to cope e.g. with topology changes
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Aim of closed-loop control of nonlinear systems

Given some initial state xp, find a control law Bu(t) = K(x(t)) which steers the
state x(t) towards a given trajectory X:

x(t) —|> x(t) t— o0

Mathematical model:

x(t) + Ax(t) = b(x, t) + Bu(t) state,
y(t) = Cx(t) observation,
x(0) = xo

Here
@ X desired stationary state, or

@ x a reference trajectory obtained from open loop optimal control.
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System theoretic point of view (H. SIcoN 44, 2005)

In practice feedback control (closed loop control) based on observations is
needed. If a mathematical model is available, Model Predictive Control (MPC)
may be applied.

1 At time t, compute an optimal time discrete control strategy
Uk41yeooyUky]-

2 Apply ug41 and proceed to #x1.

3 Set k =k + 1.

4 Goto 1

Idea: apply suboptimal variant called instantaneous control; solve the optimal
control problem only approximately by e.g. applying a few steepest descent steps
(for I = 1 proposed by H. Choi, 1995).
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past current time prediction horizon
past trajectory : / L S i optimal predicted trajectory x,» (k)
1 1 L Tl
‘current N

state x(n)

past Ieedb@ack values

feedback value f1(x(n) = #*(0)] .|

optimal control sequence u* (k)

n I

With t = t,, tp = ty4n and tc = tp41 perform

@ Prediction step: solve optimization problem on [t, t + p],

@ Control step: apply control on [¢, ¢ + ],

© Receding horizon step: t = t + &, goto 1.
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MPC with tc = t, = h, discretization

Discretize the state equation w.r.t. time (your favorite scheme!)

o+ hA)x“+1 = xk + hbk

and minimize at every time step an instantaneous version of the cost

Po) min J(uk+1) = %|uk+1|2 + %|C(xk+1 _ ’_‘k)|2
k s.t.
(I + hA)xk+1 = xk 4 pbk 4 Buk+1,

Time discretization here with implicit Euler.

@ (Py) is an optimization problem with PDE constraints!
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Feedback oracle

Q Set X0 = ¢, k =0and tp = 0.
@ Given an initial control u(‘]‘, set
u*+! = RECIPE(uf, x*, 7%, 1)
© Solve
(I + hA)x ! = xk  hb(x*, 1) + Bu*+1.
Q Set tey1 =t + h, k=k+1. If t{ < T goto 2.
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Instantaneous control

For instantaneous control the oracle RECIPE is given by

u = RECIPE(v, x¥, z, &)

iff
o Solve (I + hA)x = xk + hb(x“, ty) + By,
o solve (I + hA)*X = —C*(Cx — z2),
o set d = av + B*A.
@ determine p > 0,
o set RECIPE = v — pd (= P,9(v — pd) in case of constraints).

This oracle realizes steepest descent for problem (Py).
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Feedback operators: Instantaneous control

u = RECIPE(0, x*, 7%, &), E := (I + hA)™L.

Instantaneous control rewritten
(I + hA)Xk+1 =
xk 4 hbk —pBB*E*C*CE(x* — 3¥) — hpBB*E*C*CE(b(x¥) — Ax*).

Buktl=:Kf (xk)
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Feedback operators: Instantaneous control

u = RECIPE(0, x*, 7%, &), E := (I + hA)™L.

Instantaneous control rewritten
(I + hA)Xk+1 =
xk 4 hbk —pBB*E*C*CE(x* — 3¥) — hpBB*E*C*CE(b(x¥) — Ax*).

Buktl=:Kf (xk)

This is the semi-discrete version of
%+ Ax = b—%BB*E*C*CE(x — %) — pBB*E*C*CE(b(x) — A%),

Bi=:K(x)
x(0) = xo.
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Model predictive control

For model predictive control the oracle RECIPE is given by

u = RECIPE(xX, z, t;)

iff
@ Solve the optimality system for u
(I + hA)x = x4+ hb(x¥, ty) + Bu
(I + hA)*\ = —C*(Cx —z)
yu+B*A = 0 (yu+ B*X > 0) in case of constraints.

@ set RECIPE = u

This oracle realizes solution of problem (Py).
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Feedback operators: MPC

With C = Id and B = id let S := ~(E*E + ~vI)"'E*E.
Model predictive control rewritten

(I 4+ hA)xk+1 = xk 4 hb(xk)—ES(xk — % + hb(x¥) — hAZ").
Y

uk+1 =:Kg(xk)



UH
i
n

Mathematics of PDE constrained optimization
M. Hinze
21/167

Feedback operators: MPC

With C = Id and B = id let S := ~(E*E + ~vI)"'E*E.
Model predictive control rewritten

(I 4+ hA)xk+1 = xk 4 hb(xk)—ES(xk — % + hb(x¥) — hAZ").
Y

uk+1 =:Kg(xk)

This is the semi-discrete version of

x4+ Ax = b(x)—ihS(x — X + hb(x) — hAx), x(0) = xo.
Y

#=:Ko(x)
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MPC schematic revisited

past current time prediction horizon
past trajectory : / L S i optimal predicted trajectory x,» (k)
| . " :/ T S S SR S | |
i H i i i . i i i i

‘current

sate X(n) | feedback value f(x(n)) = #*(0)] "~

—ﬂ/
[_,_17 boeed optimal control seguence u* (k)

past Ieedb@ack values

n I

With t = t,, tp = ty4n and tc = tp41 perform
@ Prediction step: solve optimization problem on [t, t + p],
@ Control step: apply control on [¢, ¢ + ],
© Receding horizon step: t = t + &, goto 1.
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MPC with t. = h, t, = Nh

Discretize the state equation w.r.t. time (your favorite scheme!)
Set x := x*, x; = x(tx +ih)(i =1,..., N).
X1 X0 b(X()) u
* T : |= : +h : +B
XN XN—1 b(xn_1) uy

and minimize at every time step an instantaneous version of the cost; with
X = (x1,...,xn)! and U := (u1,...,un)" solve

min J(U) = Z||U|1? + 3llcX — z||?
s.t.(*) = transition constraints

(P«) {

Controller construction now along the lines of the previous slides.

@ (Py) is an optimization problem with nonlinear PDE constraints!
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Comments on controller construction

@ Optimal control problem in MPC approach need not admit a (unique)
solution. Thus MPC controller need not be well defined.
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Comments on controller construction

@ Optimal control problem in MPC approach need not admit a (unique)
solution. Thus MPC controller need not be well defined.

@ Transition constraints (often) guarantee a well defined control to state
mapping. An instantaneous controller in this case is well defined.
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Comments on controller construction

@ Optimal control problem in MPC approach need not admit a (unique)
solution. Thus MPC controller need not be well defined.

@ Transition constraints (often) guarantee a well defined control to state
mapping. An instantaneous controller in this case is well defined.

@ Time marching scheme for the state and discretization of the state in
prediction step may differ.
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Comments on controller construction

@ Optimal control problem in MPC approach need not admit a (unique)
solution. Thus MPC controller need not be well defined.

@ Transition constraints (often) guarantee a well defined control to state
mapping. An instantaneous controller in this case is well defined.

@ Time marching scheme for the state and discretization of the state in
prediction step may differ.

o Analysis (stability, decay, length of prediction horizon) of MPC schemes for
PDEs is emerging (Altmiiller, Griine & Worthmann). Results for
instantaneous control available in special situations (C = Id, B = Id).
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Comments on controller construction

@ Optimal control problem in MPC approach need not admit a (unique)
solution. Thus MPC controller need not be well defined.

@ Transition constraints (often) guarantee a well defined control to state
mapping. An instantaneous controller in this case is well defined.

@ Time marching scheme for the state and discretization of the state in
prediction step may differ.

o Analysis (stability, decay, length of prediction horizon) of MPC schemes for
PDEs is emerging (Altmiiller, Griine & Worthmann). Results for
instantaneous control available in special situations (C = Id, B = Id).

@ Promising approach: combine controller construction introduced here with
techniques developed by Altmiiller, Griine, and Worthmann (GAMM
Mitteilungen 35(2):131-145, 2012)
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Comments on controller construction

@ Optimal control problem in MPC approach need not admit a (unique)
solution. Thus MPC controller need not be well defined.

@ Transition constraints (often) guarantee a well defined control to state
mapping. An instantaneous controller in this case is well defined.

@ Time marching scheme for the state and discretization of the state in
prediction step may differ.

o Analysis (stability, decay, length of prediction horizon) of MPC schemes for
PDEs is emerging (Altmiiller, Griine & Worthmann). Results for
instantaneous control available in special situations (C = Id, B = Id).

@ Promising approach: combine controller construction introduced here with
techniques developed by Altmiiller, Griine, and Worthmann (GAMM
Mitteilungen 35(2):131-145, 2012)

@ It is very easy to include pointwise bounds on the control and/or the state
within the MPC setting!
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Comments on controller construction

@ Optimal control problem in MPC approach need not admit a (unique)
solution. Thus MPC controller need not be well defined.

@ Transition constraints (often) guarantee a well defined control to state
mapping. An instantaneous controller in this case is well defined.

@ Time marching scheme for the state and discretization of the state in
prediction step may differ.

o Analysis (stability, decay, length of prediction horizon) of MPC schemes for
PDEs is emerging (Altmiiller, Griine & Worthmann). Results for
instantaneous control available in special situations (C = Id, B = Id).

@ Promising approach: combine controller construction introduced here with
techniques developed by Altmiiller, Griine, and Worthmann (GAMM
Mitteilungen 35(2):131-145, 2012)

@ It is very easy to include pointwise bounds on the control and/or the state
within the MPC setting!

@ Optimization problems with PDE constraints (and pointwise bounds on the
control and/or state form the central building block in MPC!
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PDE constrained optimization for mother problems

Optimization Optimization Optimization Optimization Optimization

with PDE with PDE with PDE with PDE with PDE
Constraints Constraints (Constraints Constraints Constraints
S e T e
WPl Michuaed Mt Ml VPl

Optimization Optimization Optimization Optimization Optimization
with PDE with PDE with PDE with PDE with PDE

Constraints Constraints Constraints Constraints Constraints
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Mother Problem

- 1
min ey xu I u) = 3y = 2[2 ) + 5 llullf

s.t.
—A = Bu inQ
P Yy s 0.1
®) y =0 on 919, (0.1)
and
u€ Uyq CU

Here,
@ Q C R" denotes an open, bounded sufficiently smooth (polyhedral) domain,
o Y := H}(Q),
@ the operator B : U — H™1(Q) = Y* denotes the (linear, continuous)
control operator, and
@ U,q is assumed to be a closed and convex subset of the Hilbert space U.

o Later we will also add state constraints y € Y,q.
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Exercises 1

o Explain the spaces L2(Q), H}(Q), and H~1(Q).

@ In which sense is the PDE understood if the solution space is Hj (22)?
@ How is the weak solution of the Poisson problem defined?

@ Does the Poisson equation posess a unique solution?

@ Does problem (P) admit a solution for all o > 07
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Examples for control spaces and operators

Q U:=1%(Q), B:1%(Q) — H~1(Q) Injection, , U,g := {v € L2(Q);a <
v(x) < b a.e. in Q},a,b € L°(Q).

Q U := HY(Q), B: HY(Q) — H~1(Q) Injection, , Uyq := {v € L2(Q);a <
v(x) < b a.e. in Q},a,b € L°(Q).

m
©Q U:=R™M B:R™ —» H™Y(Q), Bu:= 3 ujF;, F; € H1(Q) given ,
=1
Uag :={v ER™a; < v < bj},a< b
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Reduced cost functional

We have that
o the Poisson problem for given right hand side Bu admits a unigue solution

y =y(u),
@ Problem (P) admits a unique solution (y,u) € H}(Q) X U, with y = y(u).

Thus, problem (P) can be equivalently rewritten as the optimization problem

®) min J(u) (02)

for the reduced functional

J(u) := J(y(u), u) = J(SBu, u)

over the set U,q, where S : Y* — Y denotes the weak solution operator
associated with —A.
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First order necessary optimality condition

@ The first order necessary (and here also sufficient) optimality conditions
take the form

(J'(u),v — uyy=y > 0 forall v € Uyg. (0.3)
@ Here N
J'(u) = a(u, )y + B*S*(SBu — z) = a(u, )y + B*p,
with
@ p:= S§*(SBu — z) € Y** denoting the adjoint variable. The function p in
our reflexive setting satisfies

—Ap y—z inQ,
p 0 on 89Q.

@ With the Riesz isomorphism R : U* — U and the orthogonal projection
Py,, : U — Uzq we have that (0.4) is equivalent to

u= Py, (u — O'Vf(u)) for all o > 0, (0.4)

where N N
VJ(u) = RJ'(u)
denotes the gradient of J(u).
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Exercises 2

@ Prove the optimality condition.

@ How can we obtain the formula for J’(u)?

@ Discuss the adjoint variable p?

@ How is the Riesz isomorphism in a Hilbert space defined?

o Discuss examples for the Riesz isomorphism, e.g. the cases U = L?(Q) and
U = H}(Q).

@ Is the gradient smoother than the derivative?
@ How is the orthogonal projection Py , : U — U,q defined?

@ How can we obtain the fixpoint formula for the optimal control?
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To discretize (P) we concentrate on Finite Element approaches and make the
following assumptions.

Assumption

Q C R" denotes a polyhedral domain,
Q= U;il -’_-iv
with admissible quasi-uniform sequences of partitions {'I'J}J";1 of Q, i.e. with
hpe := max; diam T; and ope := minj{sup diam K; K C T;} there holds

e 2

Ont

uniformly in nt with positive constants 0 < ¢ < C < oo independent of nt.
We abbreviate p, 1= {T]}I";1
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In order to tackle (P) numerically we shall distinguish two different approaches.
The first is called

First discretize, then optimize,
the second
First optimize, then discretize.

It will turn out that both approaches under certain circumstances lead to the
same numerical results. However, from a structural point of view they are
completely different.

@ We later will highlight a special variant of the FDTO approach which is
called variational discretization.
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First discretize, then optimize

All quantities in (P) are discretized:

@ replace Y and U by finite dimensional subspaces Y}, and Uy,

@ the set U,q by some discrete counterpart U;’d, and

@ the functionals, integrals and dualities by appropriate discrete surrogates.
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Finite element space: For k € N

Wy := {v € C°(Q); v, € Pk(T;) foralll <j < nt} =:(¢1,...,Png), and
J

Y := {V € W, Vg0 =0} =: <¢1,...,¢"> g Y,

with some 0 < n < ng.

n
Ansatz for discrete state: y,(x) = > yio;.
i=1



Mathematics of PDE constrained optimization

M. Hinze
36/167

Discrete control space: with ul,...,u™ € U, we set
o Uy:=(u',y...,u™), and
o Ud = Pﬂad(Ud), where
° Pﬂad 1 U — U,q is a sufficiently smooth (nonlinear) mapping.

With C C R™ denoting a convex closed set we assume

m
de= ue U;U=ZSjui,S€C .
j=1



Mathematics of PDE constrained optimization
M. Hinze

37/167

ng

Finally let z, := Qpz = 5 zj¢;, where Q) : L2(R) — W, denotes a continuous
i=1

projection operator.

Now we replace problem (P) by

min(y, ,us)e Yy x Ug J(h,d) (¥5 u) := %HYh - Zh”f}(ﬂ) + %”Ud”%;
s.t.
(P(n,a)) a(yn,vn) = (Bug,vp)y=,y forall vy € Yp, (0.5)
and
ug € U:d'

Here, we have set a(y, v) := [ VyVdx.
Q
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Introduce Finite Element matrices:
o Stiffness matrix: A := (ay)];_;. aj = a(i, ¢j).

@ mass matrix M := (m,-j)ﬁ:l. myj := [ ¢ipjdx, the

’ Q
@ control matrix E := (e,-l-),f"l.'zl, e;j = (Bw, ¢;)y~ y, and the
o control mass matrix F := (f;)7_,, fj := (¢, v)u.

Using these quantities allows us to rewrite (P(p,4)) as finite-dimensional
optimization problem:

mi"(y,s)ER"X]R"' Q(y,S) = %(.y - Z)tM(.y - z) + %StFS
s.t.
Pwm){ Ay = Es (0.6)

and
seC.

Admissibility is characterized by the closed, convex set C C R™.
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Since the matrix A is spd, problem (P(, ,)) is equivalent to minimizing the
reduced functional

Q(s) := Q(A™'Es, s)
over the set C.

Problem (P(,,m)) admits a unique solution (y(s),s) € R" x C which is
characterized by the finite dimensional variational inequality

(VQ(s),t — s)gm >0 forall t € C, (0.7)
with

VQ(s) = aFs + EtA"*M(A™'Es — z) = aFs + E'p,

where
p:=A"'M(A1Es — 2).
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Comparing

VQ(s) = aFs + E'tA"*M(A™'Es — z) = aFs + E'p

with

VJ(u) = au + RB*S*(SBu — z) = au + RB*p
from the infinite-dimensional problem, we note that transposition takes the role
of the Riesz isomorphism R,
@ the matrix F takes the role of the identity in U,
@ the matrix M takes the role of the identity in L2(Q),
@ the matrix E takes the role the control operator B, and

o the matrix A—1 that of the solution operator S.

Problem (IP n,m)) now can be solved numerically with the help of appropriate
solution algorltl?lms, which should exploit the structure of the problem. We fix
the following
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In the First discretize, then optimize approach the discretization of the adjoint
variable p is determined by the test space for the discrete state yp.

In the First optimize, then discretize approach discussed next, this is different.
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Exercises 3

@ Is the finite element space W, a subset of H!(R)?

® How are the functions ¢; (i = 1,..., ng) defined?

Show that the matrices A, M, and F are spd.

Does (Pn,m) admit a unique solution?

@ What is (0.7) in the case C = R™?
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First optimize, the discretize

Starting point: the first order necessary optimality conditions for problem (P);

—Ay = Bu in Q,
y =0 on 919,
(0S) —Ap = y—z inQ, (0.8)
p = 0 on 99,
(au+ RB*p,v —u)y > 0 for all v € Uyy.

o Discretize everything related to the state y, the control u, and to
functionals, integrals, and dualities as in the First discretize, then optimize
approach.

@ In addition, we have the freedom to also select an appropriate discretization
of the adjoint variable p.
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For p we choose continuous Finite Elements of order / on 7, which leads to the
Ansatz

q
pa(x) = pixi(x),

i=1
where

(Xl’---qu> cyY
denotes the Ansatz space for the adjoint variable.
Matrices:
@ adjoint stiffness matrix A := (éy);’j:l, a; = a(xi, xj)

o the matrix E := (éu):’,;ZI’ & = (Buj,x,'>y*7y,

@ and the matrix T := (t,-j)lf',’jil, t; = [ pixjdx.
Q
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The discrete analogon to (OS) reads

A~y = Es,
(0S)(n,q,m) 3 Ap = T(y-2), (0.9)
(aFs + Etp,t —s)gpm > Oforallt € C.

Since the matrices A and A are spd, this system is equivalent to the variational
inequality

(aFs + ETA"'T(A"'Es — z),t — s)gm > O forall t € C. (0.10)
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SEES

Q U :=1L%Q), B: L2(Q) — H~1(Q) Injection, , U,q := {v € L2(Q);a <
v(x) < bae. in Q},a,b € L°°(Q). Further let k = I = 1 (linear Finite

Elements for y and p), Uy := (¢',..., u™), where ul"r' = Oii

(k,i =1,...,nt) are piecewise constant functions (i.e. m = nt),
nt

C := []|[aj, b;]. where a; := a(barycenter(T;)), b; := b(barycenter(T;)).
i=1

ng
Q Asin 1, but Uy := (¢1,...,Png) (i.e. m=ng), C := H [ai, bj], where

a; := a(P;), b; == b(P;), with P; (i = 1,..., ng) denoting the vertices of
the triangulation .
m
Q Asinl., but U:=R™, B:R™ — H~Y(Q), Bu:= ) u;F;, F; €
j=1
H71(Q) given , Uyg := {v € R™ a; < v; < bj},a < b, Uy := (e1,...,em)
ng
with e; € R™ (i = 1,...,m) denoting the i—th unitvector, C := [][a;, b;]
i=1

= Uy.
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Discussion and implications

@ Choosing the same Ansatz spaces for the state y and the adjoint variable p
in the First optimize, then discretize approach leads to an optimality
condition which is identical to that of the First discretize, then optimize
approach, since then T = M.

@ Choosing a different approach for p in general leads to a non-symmetric
matrix T, with the consequence that the matrix oF + EtA—1TA—1E no
longer represents a symmetric matrix (and thus no Hessian), and

@ the expression aFs + EtA~1T(A~1Es — z) in general does not represent a
gradient.

@ There is up to now no general recipe which approach has to be preferred,
and it should depend on the application and computational resources which
approach to take for tackling the numerical solution of the optimization
problem.

@ However, the numerical approach taken should to some extent reflect and
preserve the structure which is inherent in the infinite dimensional
optimization problem (P).
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Structure exploiting discretization

This can be best explained in the case without control constraints, i.e. Uyq = U.
Then the first order necessary optimality conditions for (P) read

VJ(u) = au + RB*S*(SBu — z) = au+ RB*p =0 in U.

For proceeding on the numerical level this identity clearly gives us the advice to
relate to each other the discrete Ansétze for the control u and the adjoint
variable p.

This remains true also in the presence of control constraints, for which this
smooth operator equation has to be replaced by the nonsmooth operator
equation

1 .

u= Py, (u—o(au+ RB*p)) =__1 Py, (——RB*p) in U, (0.11)
a (6%

where Py, denotes the orthogonal projection in U onto the admissible set of

controls.

In any case, optimal control and corresponding adjoint state are related to each

other, and this should be reflected by numerical approaches to be taken for the

solution of problem (P).
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Controls should be discretized conservative, i.e. according to the relation between
the adjoint state and the control given by the first order optimality condition.
This rule should be obeyed in both, the First discretize, then optimize, and in the
First optimize, then discretize approach.
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A structure exploiting discretization concept

Let us closer investigate (0.11) in terms of the simple fixpoint iteration given
next.

Algorithm

@ u given

@ do until convergence
ut = Py,, (—éRB*p(u)), u=ut.

In this algorithm p(u) is obtained by first solving y = SBu, and then
p = S*(SBu — z).
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To obtain a discrete algorithm we now replace the solution operators S, S* by
their discrete counterparts Sy, S;° obtained by a Finite Element discretization,
say. The discrete algorithm then reads

Algorithm

o u given
@ do until convergence
st = Py, (~2RB" ). 0 = u.

where pj(u) is obtained by first solving y = S, Bu, and then solving
pn = S;(SpBu — z).

We note that in this algorithm the control is not discretized. Only state and
adjoint state are discretized.
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Two questions immediately arise.

Q Is Algorithm 4 numerically implementable?
@ Do Algorithms 3, 4 converge?

Let us first discuss question (2). Since both algorithms are fixpoint algorithms,
sufficient conditions for convergence are given by the relations

a > ||RB*S*SB||c(u)
for Algorithm 3, and by

a > ||RB* Sy ShBl £(v)

for Algorithm 4, since Py , : U — U,q denotes the orthogonal projection which
is Lipschitz continuous with Lipschitz constant L = 1.
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Question (1) admits the answer Yes, whenever for given u it is possible to
numerically evaluate the expression

Py, (—éRB*ph(u))

in the i — th iteration of Algorithm 4 with an numerical overhead which is
independent of the iteration counter of the algorithm.
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To illustrate this fact let us consider the case U = L?(Q) and B : U — H~1(Q)
denoting the injection, with a = constl, b = const2. In this case it is easy to
verify that

Pu,q (v) (x) = Ppa,p) (v(x)) = max {a, min {v(x), b}},

so that in every iteration of Algorithm 4 we have to form the control

0 () = Py (— 00 ) (012)

which for in the onedimensional setting is illustrated in Figure 54.

P(—p/alpha)
P(—p_h/alpha)

Continuous setting  Active set FE Discretization Active set
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A 1-d example

Discrete active set

25
" adjoint/aipha (discrete)
— control (discrete)
111 adjointialpha (exact) T T T
— control (exact) " adjointalpha (discrete)
— control (standard fem) 1af — control (discrete)
2 g | 1111 adjointialpha (exact)
— control (exact)
—— control (standard fem)
12f N
15 N
1 ]
osp B
1 1
06 N
05 B
04 N
02r B
0 u.Fs 5 o. rs ‘ 1

Active set 0 0117 0.156 025
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To construct the function ut it is sufficient to characterize the intersection of
the bounds a, b (understood as constant functions) and the function — L p, on
every simplex T of the triangulation = = 73,. For piecewise linear finite element
approximations of p we have the following theorem.

Let ut denote the function of (0.12), with py denoting a piecewise linear, continuous
finite element function, and constant bounds a < b. Then there exists a partition

kh = {Ki, ... Ky} of Q such that ut restricted to K; (j =1,...,1(h)) is a
polynomial either of degree zero or one. For I(h) there holds

I(h) < Cnt(h),

with a positive constant C < 3 and nt(h) denoting the number of simplexes in Tp,. In
particular, the vertices of the discrete active set associated to uT need not coincide
with finite element nodes.
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Proof: Abbreviate &} := —ép,",‘ — a, gg =b— ép,",‘ and investigate the zero
level sets 07 and Og of £ and 52. respectively.

Case n = 1: 02 N T; is either empty or a point S7 € T;. Every point S7
subdivides T; into two sub-intervals. Analogously 02 N T; is either empty or a
point S,.b € T;. Further S7 # Sib since a < b. The maximum number of

sub-intervals of T; induced by 07 and 02 therefore is equal to three. Therefore,
I(h) < 3nt(h), i.e. C =3.

Case n € N: 02 N T; is either empty or a part of a k—dimensional hyperplane

(k < n) L? C T;, analogously Ug M T; is either empty or a part of k—dimensional
hyperplane (k < n) LY C T;. Since a < b the surfaces L? and L? do not
intersect. Therefore, similar considerations as in the case n = 1 yield C = 3.
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@ It is now clear that the proof of the previous theorem easily extends to
functions p, which are piecewise polynomials of degree k € N, and bounds
a, b which are piecewise polynomials of degree / € N and m € N,
respectively, since the difference of a, b and pj, in this case also represents a
piecewise polynomial function whose projection on every element can be
(easily ?) characterized.

@ We now have that Algorithm 4 is numerically implementable, but only
converges for a certain parameter range of a. A locally fast (superlinear)
convergent algorithm for the numerical solution of equation (0.13) is the
semi-smooth Newton method, if the function G is semi-smooth in the sense
of [HIK03],[MUO03, Example 5.6].
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Let us recall that (0.11) for every o > 0 is equivalent to the equation

G(u) =u— Py, (u — O'Vf(u)) =u— Py, (u— o(au + RB*p)) =

1. )
=,_1u— Py, <—ERB p) =0in U, (0.13)

so that we may apply a semi-smooth Newton algorithm, or a primal-dual active
set strategy to its numerical solution.

For the choice o = é we in certain situations obtain that the semi-smooth
Newton method and the primal-dual active set strategy are equivalent, and are
both numerically implementable in the discrete case.
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Exercises 4

@ Why is the orthogonal projection in a Hilbert space Lipschitz continuous
with constant L =17

@ Show for constant box constraints a < b that

Py,y (v) (x) = Ppa,p) (v(x)) = max {a, min {v(x), b}}
holds.

@ Why is the bound o > ||[RB*S*SB]|| £ (u) sufficient for convergence of the
fixpoint iteration?
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What is the underlying discrete problem?
Let us define

Jp(uv) := J(SpBu,u), ue U

and consider the following infinite dimensional optimization problem

min Jy(uv). (0.14)

ucUyy

According to (0.2) this problem admits a unique solution u, € U,q which is
characterized by the variational inequality

(th(uh), v — uh)u Z 0 forall v € U,q, (0.15)
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This variational inequality is equivalent to the non-smooth operator equation
(compare (0.13))

Gp(u) =u — Py, (u — a'th(u)) =u— Py,, (u — o(au + RB*pyp)) =o-1

1 .
Eo’:é u-— PUad <_ERB*ph> =0in u,
where similar as above

VJn(u) = au + RB*S}(SpBu — z) = aws + RB*pp(u).

The considerations made above now imply that the unique solution uy, of the
infinite dimensional optimization problem (0.14) can be numerically computed
either by Algorithm 4 (for o large enough), or by a semi-smooth Newton method
(which for o = é coincides with the primal—-dual active set strategy) (since the
function G, also is semi-smooth), however in both cases without a further
discretization step.
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Primal-dual active set strategy

Solve (B = Id)
(. + Sy Sp)u + A= Spz=—r

W(u, X; u) := max(A + o(u — b),0) + min(A + o(u — a),0) = X
Primal-dual active set strategy:

Initialize up = 0, \g = —r; set I = 1, € > 0 small.

Loop /
A7 = {1+ (w1 — a) <0} (= {—r — S Spu—1 — ca < 0}, if
o= a),
Al = {X_1 + o(u—1 — b) > 0} (= {—r — 5} Shu_1 — ab > 0}, if
o= a),

T = Q\ (A7 U .AD).

1>2 A2 =42 , A=AV  or |[W(u_1,X_1) — X1 < e
u=u_1, A=A, RETURN.
Otherwise

u = aon A7, ul=bon.Af, Ar=0o0onZ

Solve for u,|I,, )"{'A‘;‘UA;’

(c+ SpSp)uy+ Ay = —r
I:=1+1.
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Semi-smooth Newton method

@ u given, solve until convergence

G/ (u)ut = —Gp(u) + G/ (u)u, u=ut.

1. This algorithm is implementable whenever the fix—point iteration is, since
— Gy(u) + Gj(u)u =

1 1 1
= _PUad <_ERB*ph(u)> —_ EP’/Jad (_ERB*ph(u)) RB*S,’:S;,BU.

2. In certain settings this algorithm for every a > 0 is locally fast convergent.
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Neumann (Robin) boundary control

U= L), Bu:= [fu-dl € (H)*(Q), R: U* — U with R(u,")y = u.
Discrete weak form
a(yn, vn) = /uv;,dl' for all v, € W,
r

discrete adjoint equation

a(vp, pn) = /Q(.Vh — Z)vpdx for all v, € W,

Thus

RB*pp = (pn)r piecewise polynomial, continuous on the boundary grid.

With U,y = {a < u < b} we have for the variational discrete u, € U,y

up = max{a, min{—l(ph)r, b}} simple cut—off at the bounds.
a
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Dirichlet boundary control

U=L%T), Bu:= — Jrudy -dr e (H&(Q) N H2(R))*, R : U* — U with
R(u,-)u = u.
Discrete weak form; find y, € W}, with

a(yn,vp) = 0 for all vy, € Yy, and y, = N(u) € Trace(W,),

where I denotes the L?-projection. Discrete adjoint equation for p, € Y},
a(vp, pn) = /(y,, — z)vpdx for all v, € Y.
Q

Thus 1
up = PUad (;Rh)a

where k;, € Trace(W),) denotes the discrete adjoint flux satisfying
/nhw,,dr = a(wp, pn) — /(Yh — z)wpdx for all wy, in W,
r Q
With U,y = {a < u < b} we have for the variational discrete u, € U,qg

1
up = max{a, min{;nh, b}} simple cut—off at the bounds.
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Dirichlet boundary control
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Exercises 5

@ In the case of box constraints, what is a canonical choice of PZ, d?

@ N: L?(T) — W, the L2 —projection, is how defined?
o Show that in the case of Dirichlet boundary control
1
up = Py_,(—kKn),
«a
where k;, € Trace(W},) denotes the discrete adjoint flux satisfying

/nhw,,dl' = a(wp, pp) — /(}’h — z)wpdx for all wy, in Wy,
r Q

o If one would like to approximate the Dirichlet boundary control problem
with piecewise constant controls. How could one achieve this? Tip:
Discretize the state with mixed finite elements (lowest order
Raviart-Thomas elements).
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Error estimates

Let u denote the unique solution of (0.2), and up the unique solution of (0.14). Then
there holds

1
allu — unlly + S lly(w) — yll* <

< (B*(p(u) — 5n(w)), iy — w)um,t + 3 lly(u) = ya(@)II%,  (0.16)
where pp(u) := Sy (SBu — 2), yn(u) := SpBu, and y(u) := SBu.
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Proof: We switch back to the variational inequalities

(j’(u), v —u)y=uy > 0 forall v € Uy,

and

(J(un)s v — up)y=,u > 0 forall v € U,g.

Crucial:
The unique solution u of the continuous problem (upper inequality) is an
admissible test function for the discrete problem (lower inequality).

Let us emphasize, that this is different for approaches, where the control space is
discretized explictly. In this case we may only expect that uj, is an admissible
test function for the continuous problem (if ever).
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So let us test the optimality condition for u with up, and the optimality condition
for up with u, and then add the resulting variational inequalities. This leads to

(a(u — up) + B*S™(SBu — z) — B*S;(ShBup — 2),up — u)y~,y > 0.

This inequality is equivalent to

allu — upllfy < (B*(p(u) — Ba(u)) + B* (Bn(u) — pn(un)), up — u))u=,u-

Let us investigate the second addend on the right hand side of this inequality.
By definition of the adjoint variables there holds

(B*(Pn(u) — pn(u), un — u) yu y = (Pn(u) — pa(u), B(up — u))y,y= =
= a(yn — yn(u), Bn(u) — pr(w)) = / (vn(um) — yn () (y () — yi(u))dx =
Q

1 1
=—llyn—yl* + /(y =)y — yn(@)dx < —Zllyn = yI? + Slly — yn(@)]®
Q

so that the claim of the theorem follows.
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What are the consequences of this Theorem?

From the structure of this estimate we immediately infer that an error estimate
for ||u — uy||y is at hand, if

® an error estimate for ||B*(p(u) — pn(u)||u~ is available, and

@ an error estimate for ||y(u) — yn(u)||2(q) is available.

This means, that the error of ||u — up||y is completely determined by the
approximation properties of the discrete solution operators S, and S;.
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The error ||u — up||u between the solutions u and uy, is completely determined by the
approximation properties of the discrete solution operators Sp and Sy
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Let us revisit our first example with U = L2(Q2) and B denoting the injection.
Then y = SBu € H?(Q) N H}(Q) (if for example Q € C!'! or Q polygonal,
convex). Let us estimate the right side of our error estimate. There holds

(RB™(p(u) — pn(u)), u — up)u = /(P(U) — Pn(u))(u — up)dx <
Q

< llp(u) — Br()ll 2(@)llu — unll 2y <
< Chz”)’(") - Z||L2(Q)“" - uh||L2(Q)?

and

lly () — yn()ll2 < ch?|lull2(g)-
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Let u and uy denote the solutions of the continuous and the discrete problem,
respectively in the setting of the first example,(1). Then there holds

lla = unll 2@y < h® {Ily(u) = 2ll2(q) + lullizg@y } -

And this theorem is also valid for the setting of this example,(2) if we require
F; € 12(Q) (j =1,...,m). This is an easy consequence of the fact that for a
function z € Y there holds B*z € R™ with (B*z); = (F;, z)y~,y for
i=1,...,m.
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Theorem

Let u and uy, denote the solutions of problem (0.2) and (0.14), respectively in the
setting of Example ??(2). Then there holds

llu — unllem < ch? {Ily(u) = 2l 20 + lullzm § ,

where the positive constant now depends on the functions F; (j = 1,...,m).
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It suffices to estimate

(RB*(p(u) — (), u — wn)em =
=31 [ Fitete) — pu(aet — ) | <
=1 (q
< lIp(a) — Bn(w) 20 (f; / |F,-|2dx> = il <
=
" < iy — Al i

The reminder terms can be estimated as above.
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Numerical example distributed control

We consider our optimal control problem with Q denoting the unit circle,

Uag = {v € 12(2); —0.2 < u < 0.2} C L%(Q)

and B : L2(Q) — Y*(= H~1(Q)) the injection. Further we set
z(x) := (1 — |x|®)x1 and & = 0.1. The numerical discretization of state and
adjoint state is performed with linear, continuous finite elements.

Here we consider the scenario that the exact solution of the problem is not
known in advance (although it is easy to construct example problems where
exact state, adjoint state and control are known, see [T05]). Instead we use the

numerical solutions computed on a grid with h = ﬁ as references.
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h=1a=0.01
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To present numerical results it is convenient to introduce the Experimental Order
of Convergence, brief EOC, which for some positive error functional E is defined

by
In E(h1) — In E(hy)
E =,

oc Inhy —Inhy

EOQOC for the state y
h Ey, Eyeup Eyeerm Ey, E o¢y,, EOC,, EO CyH1
1/1 1.47e-2 1.63e-2 5.66e-2 5.85e-2 - - -
1/2 5.61e-3 6.02e-3 2.86e-2 2.92e-2 1.39 1.44 1.00
1/4 1.47e-3 1.93e-3 1.38e-2 1.39%e-2 1.93 1.64 1.08
1/8 3.83e-4 5.02¢e-4 6.89e-3 6.90e-3 1.94 1.95 1.01
1/16 9.65e-5 1.26e-4 3.44e-3 3.45e-3 1.99 2.00 1.00
1/32 2.40e-5 3.14e-5 1.71e-3 1.71e-3 2.01 2.00 1.01
1/64 5.73e-6 7.78e-6 8.37e-4 8.37e-4 2.06 2.01 1.03

1/128 1.16e-6 1.85¢-6 3.74c-4 3.74e-4 2.30 2.07 1.16
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EOC for the adjoint state p

h Ep, Ep.up Epeerm Ep,, E 0Cp, EOCp,, E OCPHI

1/1  2.33e-2 2.62e-2 8.96e-2 9.26e-2 - - -
1/2 6.14e-3 7.75e-3 4.36e-2  4.40e-2 1.92 1.76 1.07
1/4 1.5%9e-3 2.50e-3 2.17e-2 2.18e-2 1.95 1.64 1.02
1/8 4.08e-4 6.52e-4 1.09e-2 1.09e-2 1.97 1.94 0.99
1/16 1.03e-4 1.64e-4 5.48e-3 5.48e-3 1.99 1.99 1.00
1/32 2.54e-5 4.14e-5 2.73e-3 2.73e-3 2.01 1.99 1.01
1/64 6.11e-6 1.04e-5 1.33e-3 1.33e-3 2.06 1.99 1.03
1/128 1.27e-6 2.61le-6 5.96e-4 5.96e-4 2.27 1.99 1.16
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EQC for the control u

h E., Everr E.... E., EOC,, EOC,,, EOC,,
I/T 2.18e-1 2.00e-1 8.66e-1 8.93e-1 - - -
1/2 554e-2 7.75e-2 4.78e-1 4.8le-1 1.97 1.37 0.89
1/4 1.16e-2 230e2 2.2lel 2.22e-1 2.25 1.75 1.12
1/8 3.02e-3 5.79e-3 1.15e-1 1.15e-1 1.94 1.99 0.95

1/16 7.66e-4 1.47e-3 6.09e-2  6.09e-2 1.98 1.98 0.92
1/32 1.93e-4 3.67e-4 297e2 2.97e-2 1.99 2.00 1.03
1/64 4.82e-5 9.38e-5 1.4le2 1.4le-2 2.00 1.97 1.07
1/128 1.17e-5 2.37e-5 6.40e-3 6.40e-3 2.04 1.98 1.14

EQC for the control u, conventional approach

h E., Eunap [ E.,, EOC,, EOC,,, EOC,,
I/T 2.18e-1 2.00e-1 8.66e-1 8.93e-1 - - -
1/2 6.97e-2 9.57e-2 5.10e-1 5.15e-1 1.64 1.06 0.79
1/4 1.46e-2 3.44e2 2.3%-1 2.40e-1 2.26 1.48 1.10
1/8 4.66e-3 1.65e-2 1.53e-1 1.54e-1 1.65 1.06 0.64

1/16 1.57e-3 8.47e-3 9.94e2 9.94e-2 1.57 0.96 0.63
1/32 55le4 4.33e-3 6.70e-2  6.70e-2 1.51 0.97 0.57
1/64 1.58e-4 2.09e-3 4.05e-2 4.05e-2 1.80 1.05 0.73
1/128 4.91e-5 1.07e-3 2.50e-2  2.50e-2 1.68 0.96 0.69
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Ea :=[(A\ Ap) U (An \ A)|

denotes the symmetric difference of discrete and continuous active sets. EOC
with the corresponding subscripts denotes the associated experimental order of

convergence.

EQC for active set
conventional approach our approach
h E; EOC, E, EOC;,
1/1 5.05e-1 - b5.1le1 -
1/2 5.05e-1 0.00 3.38e-1 0.60
1/4 5.05e-1 0.00 1.25e-1 1.43
1/8 2.60e-1 0.96 2.92¢-2 2.10
1/16 1.16e-1 1.16 7.30e-3 2.00
1/32 4.98e-2 1.22 1.81e-3 2.01
1/64 1.88e-2 1.41 4.08e-4 2.15
1/128 6.98e-3 1.43 8.51e-5 2.26
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Postprocessing

Let us note that similar numerical results can be obtained by an approach of
Meyer and Rsch presented in [MR04]. The authors in a preliminary step
compute a piecewise constant optimal control a and with its help compute in a
post-processing step a projected control v through

1
u= PUad(_ERB*ph(ﬁ))'

The numerical analysis requires the assumption, that the measure of the set of
elements intersected by the boarder of the active set of the control can be
bounded in terms of the grid size.
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Bang—Bang control

1
in J — - _ 2
Jmin J(u) = 3 /Q ly — ol
subject to y = G(u).

Here,
Uag :={v € ’(2);a < u < b} C L}(Q)

with a < b constants, and y = G(Bu) iff
—Ay =uin Q, and y = 0 on 99.

More general elliptic operators may be considered, and also control operators
which map abstract controls to feasible right-hand sides of the elliptic equation.
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Existence and uniqueness, optimality conditions

The optimal control problems admits a unique solution.

The function u € U, is a solution of the optimal control problem iff there exists
an adjoint state p such that y = G(u), p = G(y — y0) and

(p,v—u)>0forall v € Uy.

There holds
= a, P(X) > 0,
u(x) €[ab], p(x)=0,
=b, p(x) < 0.

Strict complementarity requirement for the solution u:
3C > 0Ve > 0: L({x € U |p(x)| < €}) < Ce
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Variational discretization

Discrete optimal control problem:

1
in J, = = — 2
Jmin Jp(u) 2/Q|.Yh yol
subject to y, = Gp(u).

Here, G,(u) denotes the piecewise linear and continuous finite element
approximation to y(u), i.e.

a(yn, vn) := (Vyn, Vvp) = (u, vp) for all vy, € Xy,
where on a given, quasi-uniform triangulation 7},

Xp := {w € C°(Q); w|,, =0, w|, linear for all T € T3}

This problem is still co—dimensional.

Ritz projection Ry, : H&(Q) — Xp,
a(Rpw, v) = a(w, vy) for all v, € X,
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Existence and uniqueness, optimality conditions for discrete problem

The variational-discrete optimal control problems admits a solution. The solution
is unique, if meas{p, = 0} = 0.

The function u, € U,q is a solution of the optimal control problem iff there
exists an adjoint state p;, such that y, = Gn(un), pn = Gn(yn — yo) and

(Phyv —up) > 0 forall v € Uy.

There holds
= a, ph(x) > 07
up(x) € [a,b], pn(x)=0,
=b, ph(x) <0



UH
ifi
n

Mathematics of PDE constrained optimization
M. Hinze
91/167

Error estimate

Let u, up denote the unique solutions of the optimal control problems with
corresponding states y = G(u) and y, = Gp(up), resp. Then

llu = wnlln, lly = yulls 1P = plliee < € {2 + llp — Rupllo= |

Sketch of proof:

o |lu—ullp < (b—a)L({p > 0,pr <0} U{p <0,py >0})
{p>0,pn <0} U{p <0,pn >0} C {lp(x)| < |lp — Pnllec} =
lu — unlln < Cllp — Phlloo
lle — palloo < |lp — Ruplloo + [IRhp — phlloo
IRkp — Phlloo < Clly — yall-

Combine these estimates with (p, up, — u) > 0 and (pp, u — up) > 0 (note
that u is admissible as testfunction for the discrete problem!).
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Numerical example with 2 switching points

t
rete
* FEgid [

Experimental order of convergence:
@ Active set 3.00073491, (here =) ||u — up||;1: 3.00077834
Function values 1.99966106
llp — pn|lLe=: 1.99979367
lly — ynllLee: 1.9997965
llp — pall2: 1.99945711
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Homotopy in a with semi—smooth Newton, Tréltzsch checkerboard

D. & G. Wachsmuth (ESAIM: COCV 2011 (Preprint 2009)), von Daniels
(Diploma Thesis 2010):

o flup — uall ~ va,

0 ||ua — tq,pll ~ h?a~1, thus

2
@ |lug — ug,pll ~ h3

u(x) = —sign p(x), p(x) = sin(87rx1) sin(87x2), y(x) = sin(7x1) sin(7wx2).

1
12872

Loop i [lu—uslli  [lu—uslz  EOC,(s) EOC,(w) Nt
3 1.10

2.5008e-001 4.7416e-001 0.61 4

4 1.2045e-001 3.4864e-001 1.05 0.44 5

5 3.6487e-002 1.9368e-001 1.72 0.85 4

6 5.8124e-003 6.2070e-002 1.33 0.82 3

7 2.1287e-003 3.7590e-002 1.45 0.72 3
mean 1.33 0.69

Numerical example by Nicolaus von Daniels
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Checkerboard example, plots

P, g
|4

ay
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Time—dependent problems

For the time—dependent case we sketch the analysis of Discontinuous Galerkin
approximations w.r.t. time for an abstract linear—quadratic model problem. The
underlying analysis turns out to be very similar to that of the previous section for
the stationary model problem.

Let V, H denote separable Hilbert spaces, so that (V,H = H*, V*) forms a
Gelfand triple. We denote by a: V X V — R a bounded, coercive (and
symmetric) bilinear form, and again by U the Hilbert space of controls, and by
B : U — L?(V*) the linear control operator. Here, T > 0. For yo € H we
consider the state equation

OfT((B")(t)a vivevdt Vv € L2(V),
(yo, v)y Vv EV,

T
of(Yt, vive,v + a(y, v)dt
(y(0), v)y

& y = T Bu,

which for every u € U admits a unique solution
y=y(u) € W:={w € L*(V),w: € L>(V*)}.
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Optimization problem

H — 1 2 @ 2
(7P) { mingy, e xuy J0s ) 1= 31l = 2o + Sl

s.t. y = T Bu,

where U,g C U denotes a closed, convex subset. Introducing the reduced cost

functional ~
J(u) = J(y(u), u),
the necessary (and in the present case also sufficient) optimality conditions take
the form
(F'(u),v — uyy=,y > 0 forall v € Upy.
Here R
VJ(u) = au + B*p(y(u)),
where the adjoint state p solves the adjoint equation

T T
f<_pt’ W)V*,V+a(w’p)dt f(y_z, W)H vV w € W7
0 0

(p(T)s v)y 0, vEV.

This variational inequality is equivalent to the semi—smooth operator equation

w =Py, (~2RB* W) .
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Discretization

Let V;, C V denote a finite dimensional subspace, and let
0=t <t <:+- < tm= T denote a time grid with grid width §t. We set
In := (th—1, ta] for n = 1,...,m and seek discrete states in the space

Vhse :={¢: [0, T] X @ = R, &(t, )|, € Vh, qb(-,x)hn eP forn=1,..

i.e. yp st is a polynomial of degree r € N w.r.t. time. Possible choices of V}, in
applications include polynomial finite element spaces, and also wavelet spaces,
say. We define the discontinuous Galerkin w.r.t. time approximation
(dG(r)-approximation) § = yp 5:(u) = Th,6:Bu € Vp 5, of the state y as unique

., m}.

solution of
m m
Ay, v) = Z /(Yt, v)u + a(y, v)dt + Z([Y]"_l’ v g+ (50, O =
n=1 In n=1
T
= (yo, V™) + /((Bu)(t), vy vdt for all v € Vi 5. (0.18)
0
Here,
vt o= tli\r‘r:" v(t,-), v = tEr'r:" v(t,-), and [v]" := vt — v,
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Discrete optimal control problem

The discrete counterpart of the optimal control problem reads for the variational
approach

(Ph,at) min jh,at(u) = J(J/h,dt(u% u)
u€Uy
and it admits a unique solution uy 5; € U,q. We further have

Vh,se(v) = av + B*pp,se(yn,s5e(v)),
where pp 5¢(¥h,5¢(v)) € Vp,s5: denotes the unique solution of

.
A(v, ph,st) = /(yh,at — z,v)ydt for all v € Vj 5;.
0

Further, the unique discrete solution uy, 5, satisfies
(un,st + B*pn,st, v — up,se)u=,u > 0 for all v € Uyg.
As in the continuous case this variational inequality is equivalent to a

semi—smooth operator equation, namely

1
up,5¢ = Pu,, (—ERB*Ph,&t(}'h,St(uh,ét))) .
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Error estimate

Let u, up 5¢ denote the unique solutions of (P) and (Ph,s.), respectively. Then

allu — upselly + lyn,se(un,se) — yh,at(u))lliz(,.,) <
< (B*(p(u) — Pn,s¢(u)), up,5: — uyu~,u + |ly(u) — ,Vh,az(u)lliz(,,), (0.19)

where pp 5¢(u) := 7;,”,‘&(’7'Bu — 2), ¥n,5¢(u) := Th,5¢Bu, and y(u) := T Bu.

As a result of estimate (0.19) we have that error estimates for the variational
discretization are available if error estimates for the dg(r)-approximation to the
state and the adjoint state are available. With dG(0) in time and piecewise
linear and continuous finite elements in space one gets

allu — upselly + llyn,se(un,se) — _Vh,az(u))lliz(,.,) < c{st + H?}.
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Incorporation of state constraints

Optimal control of pdes with pointwise constraints:

min J(y, u) s.t. PDE = B(u
sy, I, w) (v) = B(w)

Analysis: Casas 85,93 (pointwise state constraints), Casas & Fernandez 93
(pointwise constraints on gradient)
Numerical analysis (pointwise state constraints):
A priori:
Original problem: Casas & Mateos; Deckelnick & H.; Meyer;....

Ralaxation: Group of Rosch; Group of Troltzsch; Hintermiiller & H.; H.
& Meyer; H. & Schiela; ...

A posteriori: Benedix, Vexler & Wollner; Giinther & H.; Hintermiiller,
Hoppe & Kieweg.

Numerical analysis (pointwise constraints on gradient): Deckelnick, Giinther, &
H.
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State and control constraints

Model problem

: _1 2 @ 2
Jmin @)= 5 [ ly— 2 + 5l
subject to y = G(Bu) and y < b in D.

Here, U g C U closed and convex, o > 0, z, b, sufficiently smooth, and
Ay = Bu in D, plus b.c. (plusi.c.)

@ elliptic case: D = Q and Ay := — Z;{i=1 8,9. (a,-jyx,.) + Z;Ll biyx;, + cy
uniformly elliptic operator,
@ parabolic case: D = (0, T] X Q and

Ay ==yt — Z?’,,-=1 Ox; (a,-jyx,.) + z;’=1 bjyx; + cy with strongly elliptic leading
part.

Slater condition: 3ii € U,y such that G(Bd) < b in D.



UH
ifi
n

Mathematics of PDE constrained optimization
M. Hinze
102/167

Optimality conditions (Casas 86,93)

Let u € U,q denote the unique optimal control and y = G(Bu). Then there
exist i € M(D) and some p such that there holds

/pAv:/(y—z)v-I-/_vdp, Vv € X,
D D D

(B*p+ au,v —u)yxy >0 Vv € U,
pn>0, y<<bin D and /_(b—y)dp,=0,
b

where
o elliptic case: p € W15(Q) for all s < d/(d — 1) and X = H?(Q) with
Z"{j—l ajvyvi = 0 on 89,

o parabolic case: p € LS(W1?) for all 5,0 € [1, 2; with 2/s +d/o>d+1
and X = {v € C%(Q); v(0,-) =0} N {v € L2(H?), v: € L2(HY)}.
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Discretization — a variational concept

Discrete optimal control problem:

u

subject to y, = Gp(Bu) and y, < Iyb.

1 a
in J, = - —z2+ = 2
min h(u) 2/Dlyh z|® + 2IIUIIu

Here, y,(u) = Gp(Bu) denotes the
o p.l. and continuous fe approximation to y(u) (elliptic case),

@ dg(0) in time and p.l. and continuous fe in space approximation to y(u)
(parabolic case), i.e.

a(yn, vn) = (Bu, vp) for all v, € Xj.

We do not discretize the control!
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Variational versus conventional discretization
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Variational discretization for time-dependent problems

Movie time-dependent problems
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Discrete optimality conditions

Let up, € U,y denote the unique variational—-discrete optimal control,
¥h = G(Buy). There exist u € R¥ and p, € X}, such that with

o pup = Zj"ll 1j0x; (elliptic case, x; fe nodes, k = nv),

© pn =301 377 pidx; 0 ﬁ Ji; odt (parabolic case, x; fe nodes, /; dg
intervals, k = nv + m),

we have

a(vp, pn) = /D(}’h — z)vp + /[_, vhdpp Vv € Xp,
(B*pp + cup,v — up)y~u > 0 Vv € Uag,
1 2 0,y < Ioby and [ (b = yi)day = 0.

Here, 6x denotes the Dirac measure concentrated at x and /I, is the usual
Lagrange interpolation operator.
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Results

Let up € U,q denote the variational-discrete optimal solution with corresponding
state y, € X, and pp € M(D). Then for h small enough

lyall, llunllu, |allaes) < C-

For the proof a discrete counterpart to the Slater condition is needed, which is
deduced from uniform convergence of the discrete states associated to the Slater
point Bii.
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Results, cont.

Let u denote the solution of the continuous problem and up, the variational
discrete optimal control. Then

allu — wpll? + lly — yul® <
< €l aays l1anll aaqy) {11y = yn(@)lloo + lly" (un) = ynlloo } +
+ Cllulls D) { 1Ly = y(e)ll + lly" (n) — yll} -

Here, yy(u) = Gp(Bu), y"(Uh) = G(Buy).

We need uniform estimates for discrete approximations.
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Error estimates, parabolic case

Deckelnick, H. (JCM 2010)

Controls u € L2(0, T)™, and f; € H'(Q) given actuations.

m

Bu = Y u(f(e), 0 € H(@)

Then y = G(Bu) € {v € L°°(H2), ve € L2(H')} and we have with y, = G,(Bu)
and time stepping 5t ~ h?

_ h\/|logh|, (d=2)
Iy = llee < € { 2]

(d=3)

This is not an off-the-shelf result! It yields

allu — unll® + lly — wall* < C{ J{W fd = 3;.
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Error estimates, elliptic case

Deckelnick, H. (SINUM 2007, ENUMATH 2007)

@ Bu € L%(Q):

1
o(h?), ifd=2,
u—u 5 —_ =
| wllus Iy — yallgr { oh}), ifd=3,
@ Bu € Wl5(Q):

3_d
lu —unllus lly = ynallyr < Ch27 25 /| log .

llu — unllus lly — ynllyr < Ch|logh.
o U=1%Q), U, = {u < d}, up p.c:

@ Bu € L°°(Q):

hllogh|, ifd =2,
o= o lly =yl < € { 8" 970

Similar results obtained by C. Meyer for discrete controls.
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Numerical experiment 1

Q= 31(0), a >0,

1 1 1
20) ;= A+ — — o Ix2 4 5 log|xl, b(x) =[x +4,
T Ar 2w
and ug(x) :=4 + ﬁ|x|2 — ﬁ log |x|.

1 a
soyi=5 [ly=2P+ 5 [ lu—wl,
where y = G(u).

Unique solution u = 4 with corresponding state y = 4 and multipliers

1
|2 — —log |x| and p = &p.

1
p(x) = 4 Ix =
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EOC = In E(h;) — In E(hz)

Inhy —Inhy
lu — unll Ly — yall
0.788985 0.536461
0.759556 1.147861
0.919917 1.389378
0.966078 1.518381
0.986686 1.598421

M. Hinze
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State and control for Dirac example
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Relaxing constraints — Lavrentiev (H., Meyer COAP 2008)

Lavrentiev Regularization: relax y < b to Au + y < b (A > 0). Numerical
analysis yields

@ Bu* € L%(Q) uniformly:

o — | ~ llu = o™+ o™ = up || ~ VX4 B9,

e Bu* € W15(Q) uniformly for all s € (1, ﬁ):

llu — upll ~ llu — o™+ o> — || ~ VX4 027927

e Bu* € L>°(Q), Bup € L°°(Q) uniformly:

llu — uitll ~ llu — ™| + llo* — upl| ~ VX + h|log h].
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Relaxing constraints — penalization (Hintermiiller, H.)

Relax y < b with J [, |(y — b)¥|?dx in cost functional.
@ Bu” € L*(R) uniformly:
llu —ufll ~ llu— ]| + |lu” — u)]| ~
1 1/2
~ (hl—d/p + 7h_d/2> + hl_d/4,
vl

@ Bu” € Wl5(Q) for all s € (1, ﬁ) uniformly:

llu —ufll ~ llu — o[ + [Ju” — u)|| ~
1 1/2
~ (hl—d/P + 7h_d/2) + h2—d/2—e’
vl
@ Bu" € L°°(Q), Bu] € L°°(Q) uniformly:

llu =l ~ llu— ]|+ |lu” = u)]| ~

~ (hl—d/P + Lh—d/z)l/2 + h|log h|.
Vai
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Relaxing constraints — penalization, numerical results

Convergence of |U‘“ﬁ|f

10 :
——h=1/16
——h=1/32
. ——h=1/64
10° | ——h = 1/1281
—=—h = 1/256
. —o—h=1/512
- =1/2
== -2 —OK ™)
57107
El
107 1
-6
10 : ‘
10° 10° 10" 10"
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Relaxing constraints — barriers (H., Schiela 2008)

Barriers: relax y < b by adding —p. [, log (b — y)dx to cost functional (n > 0).
Numerical analysis yields

@ But ¢ LZ(Q) uniformly:

lu — af | ~ llu = uP|| + llu* — upf || ~ -+ B9

@ Bu* € WbHs(Q) for all s € (1, ﬁ) uniformly:

lu — aff | ~ llu — || + [Ju# — uf'|| ~ /R + B2,

@ But € L°>°(Q), Bu}' € L°°(Q) uniformly:
llu — wpfll ~ llu — u|| + [|u* — uf|| ~ /1 + h|log h.

This is work in progress with Anton Schiela.
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Relaxing constraints — barriers, numerical results

10

10°F

overall error

10

10 L Lol L T | L Lol L Lol L Lol L L
100 10° 10° 10° 10° 107 107
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Consequence: Grid size h and parameters (), «, 1) should be coupled;

Lavrentiev: v\ ~ h2—9/2,

Barriers: /[t ~ h2—d/2,

Penalization (p = oo): % ~ R1+d/2,
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Constraints on the gradient

Consider

. _1 2 o r o 2
jmin J@) =3 [y —zP+ 2 [ (+5/Q|u|

where y = G(u), i.e. solves the pde, and Vy € Y,q.

Here _ _
Yaa = {z € CO(Q)7 | |z(x)| < 6,x € Q},
and
r=2: Ug={vet?’(Q|a<u<bae. in Q}(a,b € L®),
r>d: Uy = L"(Q).

Then U,g C L"(Q) for r > d = Vy € C°(Q)“.

Slater condition:

i € Uy |V§(x)| < 8, x € Q, where § solves the pde with u = i.
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Optimality conditions (Casas & Fernandez)

An element u € U,q is a solution if and only if there exist i € M ()9 and
p € LY(Q) (t < 7%5) such that

fn pAz — fn(y — z)z

[aVz-dii Vz e w?t (@) nwht (@)
Jaz—Vy)-dii 0

Vz € Yad,

IA N

Jo(p + au)(d — u)
P+ o((ut)u|""%u)

Vi € Uyg for r =2, or

Y
]

in Q for r > d.

Structure of multiplier: 7 = %Vy u, where 1 € M(Q) > 0 is concentrated on
{x € 2| |Vy(x)| = é}.
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FE discretization, conventional

Piecewise linear, continuous Ansatz for the state y, = G,(u) € Xp.

The discrete control problem reads

1 " [e%
in J =1 2 7/ r 7/ 2
Join () 2/9th I+ Q|u| (+2 ﬂ|u|

. 1 h
subject to y, = Gp(u) and (|T-| /TVyh) rer, € Yo

where

Ya':j = {cp : @ > RY | ch| 1 is constant and [ch 7| < 6, T € Th}-
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FE discretization, conventional, optimality conditions

The variational discrete problem has a unique solution u, € U,q. There exist
ur €RY, T € T x and pp € Xp such that with y, = Gp(up) we have

a(vh,p,,)=/(yh—z)vh+ S ITIVunropr Yn € X,
@ TET
h,X

> ITl(eny — Vynr) -1 <0 Vep € Cpy
TETh,x

phn + o((up+)|up| " 2up) =0 in Q.

Structure of the multiplier: 1 = pr %Vy,,T, where 1 € R. Furthermore,
pr > 0and pur > 0only if [Vyp, | = 0.
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Results

Deckelnick, Giinther, H. (Oberwolfach Report 2008): Let u, € Uyqg be the
variational discrete optimal solution with corresponding state y, € X, and
adjoint variables p, € Xp,, g1 (T € Th)-

Then for h small enough

© llyalls Nunllers lenll 235 X rem, , ITlnTl < C,

o lly — yall < €2~ Jlu — upllr < CH7O=7), and
llu — unll;z < ChZA—).

These results are also valid for a piecewise constant Ansatz of the control.
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FE discretization, Raviart Thomas

Mixed fe approximation of the state with lowest order Raviart—Thomas element,
i.e.

(Yrsvh) = Gn(u) € Yp X Vy
denotes the solution of

|
o

/ A_lvh - wWh + / yh divwy, VYwy € Vy,
Q Q

/zhdivvh—/agyhz,,+/uz,,
Q Q Q

0 VZ;, e Yh.
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FE discretization, cont.

The discrete control problem reads

. 1
min Jy(u) := 2 /9 lyn — 2% +

o
u€Uyy 2
subject to (yn,vh) = Gn(u) and (

=
\
:'
NalZ
-
m
3
m
2=

where

Ya'a = {cy : @ —» RY | ch is constant and [ch 7| < 8, T € Th}-
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FE discretization, optimality conditions

The discrete problem has a unique solution up € U,q. Furthermore, there are
it € RY and (pp, Xn) € Yn X Vi such that with (yp,vn) = Gh(up) we have

/A_IXh * Wh +/Ph divwy, + Z gr ][ A lw, = OVw, €V,
Q Q TeT T
/ZhdiVXh —/aOPhZh+/(J/h —2)zz = 0Vz € Y.
Q Q Q
/(Ph +aup)(d —up) > 0Vi € Ung
Q

Z ar - (Ch|'r —][ A_lvh) < 0Vc, € YaI:j'
TET, T

Structure of the multiplier: G = ur %f,. A~ lv,, where p7 € R. Furthermore,
pr > 0and pr > 0 only if |3CT A_lvh| =4.
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Results

Deckelnick, Giinther, H. (Numer. Math 2008): Let u, € U,q be the optimal
solution of the discrete problem with corresponding state (yn,v,) € Y, X V}, and
adjoint variables (pp, xn) € Yo X Vb, g1, T € Th.

Then for h small enough

o |lynll, ZTET;. |Zr| < C, and

1 1
o |lu—up|l + lly — ynll < Chz]|logh|2.
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Constraints on the gradient, example

We take Q = B>(0) and consider

. 1
min J(u) = 3 ly — 2lZ2(q) + 51022

with pointwise bounds on the constraints, i.e. {a < u < b}, where
a,b € L°°(2), and pointwise bounds on the gradient, i.e. |Vy(x)| < 6 :=1/2.
State and control satisfy

—Ay=Ff+uinQ, y=0o0ndR.

Data:

+3m2—1x2 0
z(")'—{ i|n2 1|n|x| ,1

Solution:

y(x) = z(x) and u(x) = { S :‘1]



UH
i
n

Mathematics of PDE constrained optimization

. Hinze
130/167

Numerical experiment, piecewise constant control Ansatz
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RL_lu— upllys  lu— up]

0.76678 0.72339

1

2 0.33044 0.64248
3 0.27542 0.54054
4

0.28570 0.53442
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ly — yall
1.90217

1.25741
1.23233
1.16576

Results show the predicted behaviour, since r = co
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Numerical solution, mixed finite elements
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Experimental order of convergence

RL _ Jlu—wpll lly —ynll lly® — ypl
T 098576  1.06726  1.08949
2 051814  1.02547  1.09918
3 050034  1.01442  1.08141

Superscript P denotes post—processed piecewise linear state. It attains the same
order of convergence but yields significantly smaller approximation error.
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Further aspects and applications

@ Optimal control of PDEs on surfaces

@ Applications to flow control
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PDE constrained optimization on surfaces

Formulation of optimal control problems on surfaces is along the lines of the
planar case. Concerning discretization, the approximation of the surface has to
be considered;

o Elliptic case

o Use Dziuk’s finite element concept for the Laplace Beltrami operator
of 1988 for the discretization of the state equation;

e Use variational discretization (H. COAP 2005) for the discretization of
the control problem;

o Use a semismooth Newton method of Hintermiiller, Ito and Kunisch;
Michael Ulbrich (SIOPT 2003) to solve the resulting nonlinear systems.

@ Parabolic case

o Use ESFEM from Dziuk and Elliott (Acta Numerica 2013) for the
discretization of the parabolic PDE on the evolving surface;

e Use variational discretization (H. COAP 2005) for the discretization of
the control problem.

o Use a semismooth Newton method of Hintermiiller et al. (SIOPT
2003) to solve the resulting nonlinear systems.

— more details on demand.
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Application: control of Navier Stokes systems

The classical instationary NS system: steer y to y, where
ye —vQAy + (yVy)+Vp= Bu inQ7,
—divy= 0 in Q7,
+IC + BC.
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Application: control of Navier Stokes systems

The classical instationary NS system: steer y to y, where

ye —vQAy + (yVy)+Vp= Bu inQ7,
—divy= 0 in Q7,
+IC + BC.

The Boussinesq approximation: steer y to y and/or T to 7

ye+(y-V)y —vAy+Vp+pB7g= Byu inQT,

—divy= 0 in Q7,

T+ (y - V)T—xAT—Ff= Bru inQ7,
+IC + BC.
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Application: control of Navier Stokes systems

The classical instationary NS system: steer y to y, where
ye —vQAy + (yVy)+Vp= Bu inQ7,
—divy= 0 in Q7,
+IC + BC.

The Boussinesq approximation: steer y to y and/or T to 7

ye+(y-V)y —vAy+Vp+pB7g= Byu inQT,

—divy= 0 in Q7,
T+ (y-V)IT—xAr—f= Bru inQT,
+IC + BC.

The Cahn-Hilliard Navier-Stokes system: steer c to €

yt—%Ay+y-Vy+Vp+Kch= Bu in QT,
—divy= 0 in QT
ct—iAw+Vc-y= 0 in Q7,
—7y?Ac+®'(c) —w= 0 in QT,

+IC + BC.
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Decay, distributed control of classical NSE, H. SICON 2005

A:= —vA, b(y) := P[(yV)y]. solenoidal setting. Let p denote stepsize in
stepest descent, h time stepping.
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Decay, distributed control of classical NSE, H. SICON 2005

A:= —vA, b(y) := P[(yV)y]. solenoidal setting. Let p denote stepsize in
stepest descent, h time stepping.

p < 2 positive, h small(p), b and y smooth and bounded in appropriate norms.
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Decay, distributed control of classical NSE, H. SICON 2005

A:= —vA, b(y) := P[(yV)y]. solenoidal setting. Let p denote stepsize in
stepest descent, h time stepping.

p < 2 positive, h small(p), b and y smooth and bounded in appropriate norms.
Theorem 1: The iterates {y/} of instantaneous control strategy satisfy
Iy —y(t) < ew!

with some positive Kk < 1.
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Decay, distributed control of classical NSE, H. SICON 2005

A:= —vA, b(y) := P[(yV)y]. solenoidal setting. Let p denote stepsize in
stepest descent, h time stepping.

p < 2 positive, h small(p), b and y smooth and bounded in appropriate norms.
Theorem 1: The iterates {y/} of instantaneous control strategy satisfy
ly —5()l < e
with some positive Kk < 1.
Theorem 2: For the unique solution y of the continuous control law
y + Ay = b(y)—
P —- - = — —-
— ,B"Bly —y) — pB*B(b(y) — b(y)) +y + Ay — b(y)
¥(0) = yo,

|y — ¥| decays exponentially to zero with order — £, i.e.

ly(e) —y(8)| < Cexp(—gt) ly(0) — y(0)|
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Exponential decay, laminar cavity flow, Stokes tracking

Evoluton of ly-2l, Evolution of y-2,.
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BFS flow, domain

Cost functionals:
T
Josw) =3[ [fo, Iy = yal?ds + 7 fr, w?dre] dr,

J(y’ = 2 sz BAxy BAxy

[frs 19y m _ %Ddrs + :ztfrc g2 dl'c] dt.
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Boundary control with backflow observation in volume after the step.

Inst. control 1-step MPC

3-step MPC

Boundary control with backflow observation at the bottom boundary.

Inst. control [2,9] Inst. control [4,9]

Inst.wcontrol [6.,9]
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MPC for Boussinesq approximation in the cavity

A:= [ _’JA __GAE ] b(x,t) = b(y,T) == [ P([f/vvv)z-v] ]

i+M
min J(y, T, u, ur, uQ) = Z (% /(yj — 20)2dx + % /(‘rj — §/)2dx
j=i+1 © Q

. .2 .
+ %/u’zdx+ %/u{; dx + %/u’ozdx) s.t. transition constraints
r Q Q

1 . i1 . : :
ST — aA-r/_"'1 =cq u_’Q + dit‘r/ - (V)
ad,mitl = oWt — L p)
1 : : i1 . : : il
&Y =By VIt = cpu™ 4 Gyl — (Y)Y - Gt
—dlv_y”'1 =0
ytir =0

for j=i,...,i+M—1.
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MPC results - control horizon

Cost decreases with increasing the length of the control horizon M (dis-
tributed heating)

——— 1o

MPC with boundary heating only works for sufficiently large control hori-
zons.
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Tracking perturbed optimal trajectories

10 T T T T T T T T T

— 01

--02

I 0.4
—_optimal

Instantaneous control with distributed heating tracks perturbed trajectory, the
optimal open loop strategy fails.
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Instantaneous control of CHNS

At each time instance t; solve approximately the minimization problem

1
min J*(c,u) = 5 /Q(c — P+ S /ﬂ |ul? dx (PK)
s.t.
— T Ay=u+f (0.20)
YT Re YT '
.
c— FeAW = Coild — TV Coidy (0.21)
—720c + As(€) — w = coig (0.22)
Here

f(Cotds Wotds Yotd) = Yoid — TCotd V Wotd — T(Yotd V)Yold
As(c) = s(max(0, c — 1) + min(0, ¢ + 1))

Note: scheme (0.20)-(0.22) is not recommended to integrate the CHNS. It only
serves the purpose of controller construction.
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The gradient of J¥

Here we have

VJIKub) = auk + ps,

where p3 stems from the solution to the adjoint system

—~2Apr + Ai(€)p2 — TV y+pr=¢c — ¢y (0.23)
T
Pe
-
p3s — —Ap3 =T7cVpy (0.25)

Re
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Example: Circle2Square

Initial state (circle) and desired state (square)
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Morphing: Circle2Square

Circle2Square
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Circle2Square: snapshot of controlled states
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Circle to Square
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0 lecyll 2
10
—H=0.015
- -H=0.025
© H=0.050
10"
0 5 10

time

Figure: Deviation of stabilized square from desired square for several prediction

horizons.
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Dirichlet boundary control of rising bubble: bottom and side walls

RisingBubbleControl
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Dirichlet boundary control of rising bubble: 20 controls at side walls

RisingBubbleControl
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Instantaneous control: decay

lle=c4ll, 2
0.8
0.6
0.4
0.2
% 1 2 3 4
time

Figure: Deviation of controlled bubble from desired bubble.
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Dirichlet boundary control of rising bubble: 5 controls at side walls

RisingBubbleControl
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Instantaneous control: decay

lle=c4ll, 2.0
0.14
0.12
0.1
0.08
0 2 4 6 8
time

Figure: Deviation of controlled bubble from desired bubble.
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Control of weakly conducting fluids (Sfb 609)

Thanks to Tom Weier, FZR Rossendorf
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Develop methods for circular cylinder

Control target: Re-attach flow utilizing near wall Lorentz forces movie Desired:
Open- or closed-loop control strategy
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Generation of the Lorentz Force

On the surface of the cylinder a Lorentz force is generated with actuators. It
decays exponentially in the flow (T. Berger et al., Phys. Fluids 2000). The
Lorentz force has the form

F[_(X,y) = e¢g(¢)e—§~dist[(x,y), cylinder]’

]-s ¢0 S d) S ¢1
g(o) = —1, 180° + ¢po < ¢ < 180° + ¢1
0, else ,

a electrode- /magnet-spacing. The direction of the Lorentz Force is defined by
the arrangement of the magnets/electrodes.
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Schematic
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Mathematical Model: NSEs

1
ut+(u~V)u+Vp—R—V2u=NFL
e
V.u=0

plus initial and boundary conditions.

The Interaction parameter N describes the ratio of the electromagnetic and the
inertial forces of the flow,

N = JoBoD
pUZ,
with Jy the current density and By magnetic induction.

’

The numerics are validated against the computations of R. Grundmann/O.
Posdziech (TUD). Comparison with experiments by G. Gerbeth/T. Weier et al.
(FZR) to be addressed.
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Control with near wall Lorentz force

Control: u(t,x) = 3 ui(e)fi(x). fi(x) = e~x—%l’.

i=

Desired flow x: Stokes flow.
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Control with near wall Lorentz force

2 . .
Control: u(t,x) = > ui(t)esfi(x). fi(x) = g(p)e™ s @l cyinder]

i=

Desired flow X with x; = 1.
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CPU time needed to compute the instantaneous control strategy =2,5 times
CPU time needed for one forward solve.

This amounts to 1-2 % of the CPU time needed to compute the optimal control
trajectory.
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research (only PDE control)
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