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Outline

Motivation: PDE model-based simulation to PDE model-based design.

A multiphysics example: Optimal control of crystal growth.

Motivation: Interface motion planning in multiphase �ows.

Model predictive control - the general concept.

Mathematics of PDE constrained optimization for model problems → main
part of the presentation.

Basic concepts.

Discretization.

Algorithms.

Numerical analysis.

Incorporation of state constraints.

Applications and further aspects (Sunday).
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Motivation

Mathematical model of a real world process available

→ predict process behaviour for given inputs,

→ analyse the sensitivity of the process at certain states,

Mathematical model of a real world process available

→ design your process through inputs; this is optimization,

→ consider the inverse problem: given observations of the system, which input
delivers the best reconstruction of the observations?. In other words: how
should I choose the input to achieve a prescribed output.

→ keep your process on track; control the mathematical model so that it stays
in the vicinity of a desired state

For systems governed by PDEs the basic building block here is

Optimization with PDE constraints
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Vertical gradient freeze growth - oven and crystal

VGF-Oven with coil system for the application of travelling magnetic �elds, courtesy Olf Pätzold



Mathematics of PDE constrained optimization
M. Hinze

5/167

VGF schematic and principle

Sectional drawing of the seed zone and the bottom

growth zone. The thermocouple arrangement is shown

in detail on the left hand side. Courtesy: H. Krause, O.

Pätzold, U. Wunderwald, M. Hermann

Principle of VGF-growth in closed ampoules: (a) Sketch

of the growth ampoule; (b) Thermal pro�les during the

process (Ts ... melting temperature). Courtesy: H.

Krause, O. Pätzold, U. Wunderwald, M. Hermann
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VGF crystal growth - subproblems

Flow control
Control of solidi�cation

(H., Ziegenbalg J. Comput. Phys.

223, ZAMM 87, 2007; H.,

Pätzold, Ziegenbalg J. Crystal

Growth 311, 2009)
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Why optimization? And which kind of optimization?

Why optimization?

Large radial temperature gradients cause thermal stresses → striations in
the crystal.

Remedy: �at �uid-liquid interface.

Which kind of optimization?

Closed-loop optimization desirable. But process hard to observe.

Growth-system is closed → open loop (optimal) control.
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Modeling of the crystal-melt complex

Ωs

Ωl

ΣΓ

Θ

G

2-phase Stefan problem with �ow
driven by convection and Lorentz
forces.

Interface (free boundary) is
modeled as a graph.

Free boundary motion control by
wall temperature and the Lorentz
forces.

Control goal: tracking a prescribed
evolution of the free boundary.

Achieve this goal by minimizing an
appropriate cost functional.

Express derivatives with the help
of the adjoint calculus.

Consider physical constraints on
controls and states.
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Mathematical model

Interface: Γ(t) =
{

(x, f (t, x))T ; x ∈ G
}
.

∂tu = ks
csρ

∆u in ΩT
s ,

∂tu + ~v · ∇u = kl
clρ

∆u in ΩT
l ,

∂t~v + (∇~v)~v − ε
ρ

∆~v + 1
ρ
∇p = −~gγ(u − uM) + ~A(Ac) in ΩT

l ,

ks/l
αs/l

∂~νu = ub − u on Σ,

u = uM on Γ(t),

∇ · ~v = 0 in ΩT
l ,

Lρ ft√
1+|∇f |2

= ks
ρ
∂~µus −

kl
ρ
∂~µul on GT ,

+IC +BC.
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Optimization problem

By f the desired evolution of the free boundary is denoted. The control goal
mathematically is formulated as a pde-constrained optimization problem;

(P)

 minf ,ub,Ac
J(f , ub, ~Ac) := 1

2T

T∫
0

∫
G

(
f (t, y)− f (t, y)

)2
dydt + S(ub, ~Ac)

s.t. mathematical model + constraints on controls and/or states.

The functional J models the objective of reducing the mismatch between the
interface and the desired free boundary in the mean square sense.

The function f is coupled to the controls through the mathematical model.
S penalizes control costs.
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Numerical experiment, results (Implementation Stefan Ziegenbalg)

Temperature u − uM (colored stripes), velocity (arrows) and free boundary
(black line) at four time instances
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Simulation and control of multiphase �ows

Develop numerics for hydrodynamics of multiphase �ows, including e�cient,
reliable, fully automatic adaptive concepts to resolve interface

Develop control concepts for multiphase �ows

Use of di�use interface approach to cope e.g. with topology changes
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Aim of closed-loop control of nonlinear systems

Given some initial state x0, �nd a control law Bu(t) = K(x(t)) which steers the
state x(t) towards a given trajectory x̄:

x(t)
!−→ x̄(t) t →∞

Mathematical model:

ẋ(t) + Ax(t) = b(x, t) + Bu(t) state,
y(t) = Cx(t) observation,
x(0) = x0

Here

x̄ desired stationary state, or

x̄ a reference trajectory obtained from open loop optimal control.
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System theoretic point of view (H. SICON 44, 2005)

In practice feedback control (closed loop control) based on observations is
needed. If a mathematical model is available, Model Predictive Control (MPC)
may be applied.

1 At time tk compute an optimal time discrete control strategy
uk+1, . . . , uk+l .

2 Apply uk+1 and proceed to tk+1.

3 Set k = k + 1.

4 Goto 1

Idea: apply suboptimal variant called instantaneous control; solve the optimal
control problem only approximately by e.g. applying a few steepest descent steps
(for l = 1 proposed by H. Choi, 1995).
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MPC schematic (from Grüne & Pannek)

With t = tn , tp = tn+N and tc = tn+1 perform

1 Prediction step: solve optimization problem on [t, t + tp],

2 Control step: apply control on [t, t + tc ],

3 Receding horizon step: t = t + tc , goto 1.
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MPC with tc = tp ≡ h, discretization

Discretize the state equation w.r.t. time (your favorite scheme!)

(I + hA)xk+1 = xk + hbk

and minimize at every time step an instantaneous version of the cost

(Pk)

 min J(uk+1) = γ
2
|uk+1|2 + 1

2
|C(xk+1 − x̄k)|2

s.t.
(I + hA)xk+1 = xk + hbk + Buk+1.

Time discretization here with implicit Euler.

(Pk) is an optimization problem with PDE constraints!
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Feedback oracle

1 Set x0 = φ, k = 0 and t0 = 0.

2 Given an initial control uk0 , set

uk+1 = RECIPE(uk0 , x
k , x̄k , tk)

3 Solve

(I + hA)xk+1 = xk + hb(xk , tk) + Buk+1.

4 Set tk+1 = tk + h, k = k + 1. If tk < T goto 2.
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Instantaneous control

For instantaneous control the oracle RECIPE is given by

u = RECIPE(v , xk , z, tk)

i�

Solve (I + hA)x = xk + hb(xk , tk) + Bv ,
solve (I + hA)∗λ = −C∗(Cx − z),

set d = αv + B∗λ.
determine ρ > 0,

set RECIPE = v − ρd (= Pad (v − ρd) in case of constraints).

This oracle realizes steepest descent for problem (Pk).



Mathematics of PDE constrained optimization
M. Hinze
19/167

Feedback operators: Instantaneous control

u = RECIPE(0, xk , x̄k , tk), E := (I + hA)−1.

Instantaneous control rewritten

(I + hA)xk+1 =

xk + hbk−ρBB∗E∗C∗CE(xk − x̄k)− hρBB∗E∗C∗CE(b(xk)− Ax̄k)︸ ︷︷ ︸
Buk+1=:Kd

I
(xk )

.

This is the semi-discrete version of

ẋ + Ax = b−
ρ

h
BB∗E∗C∗CE(x − x̄)− ρBB∗E∗C∗CE(b(x)− Ax̄)︸ ︷︷ ︸

B u
h

=:KI (x)

,

x(0) = x0.
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Model predictive control

For model predictive control the oracle RECIPE is given by

u = RECIPE(xk , z, tk)

i�

Solve the optimality system for u

(I + hA)x = xk + hb(xk , tk) + Bu
(I + hA)∗λ = −C∗(Cx − z)
γu + B∗λ = 0 (γu + B∗λ ≥ 0) in case of constraints.

set RECIPE = u

This oracle realizes solution of problem (Pk).
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Feedback operators: MPC

With C ≡ Id and B = id let S := γ(E∗E + γI )−1E∗E .
Model predictive control rewritten

(I + hA)xk+1 = xk + hb(xk)−
1

γ
S(xk − x̄k + hb(xk)− hAx̄k)︸ ︷︷ ︸

uk+1=:Kd
O

(xk )

.

This is the semi-discrete version of

ẋ + Ax = b(x)−
1

γh
S(x − x̄ + hb(x)− hAx̄)︸ ︷︷ ︸

u
h

=:KO (x)

, x(0) = x0.
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MPC schematic revisited

With t = tn , tp = tn+N and tc = tn+1 perform

1 Prediction step: solve optimization problem on [t, t + tp],

2 Control step: apply control on [t, t + tc ],

3 Receding horizon step: t = t + tc , goto 1.
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MPC with tc = h, tp = Nh

Discretize the state equation w.r.t. time (your favorite scheme!)

Set x0 := xk , xi ≈ x(tk + ih)(i = 1, . . . ,N).

(∗) T

 x1
...
xN

 =

 x0
...

xN−1

 + h

 b(x0)
...

b(xN−1)

 + B

 u1
...
uN


and minimize at every time step an instantaneous version of the cost; with
X := (x1, . . . , xN)t and U := (u1, . . . , uN)t solve

(Pk)

{
min J(U) = γ

2
‖U‖2 + 1

2
‖CX − z‖2

s.t.(∗) ≡ transition constraints

Controller construction now along the lines of the previous slides.

(Pk) is an optimization problem with nonlinear PDE constraints!
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Comments on controller construction

Optimal control problem in MPC approach need not admit a (unique)
solution. Thus MPC controller need not be well de�ned.

Transition constraints (often) guarantee a well de�ned control to state
mapping. An instantaneous controller in this case is well de�ned.

Time marching scheme for the state and discretization of the state in
prediction step may di�er.

Analysis (stability, decay, length of prediction horizon) of MPC schemes for
PDEs is emerging (Altmüller, Grüne & Worthmann). Results for
instantaneous control available in special situations (C = Id ,B = Id).

Promising approach: combine controller construction introduced here with
techniques developed by Altmüller, Grüne, and Worthmann (GAMM
Mitteilungen 35(2):131�145, 2012)

It is very easy to include pointwise bounds on the control and/or the state
within the MPC setting!

Optimization problems with PDE constraints (and pointwise bounds on the
control and/or state form the central building block in MPC!
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PDE constrained optimization for mother problems
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Mother Problem

(P)



min(y,u)∈Y×U J(y , u) := 1
2
‖y − z‖2

L2(Ω)
+ α

2
‖u‖2U

s.t.
−∆y = Bu in Ω,

y = 0 on ∂Ω,
and
u ∈ Uad ⊆ U.

(0.1)

Here,

Ω ⊂ Rn denotes an open, bounded su�ciently smooth (polyhedral) domain,

Y := H1
0 (Ω),

the operator B : U → H−1(Ω) ≡ Y ∗ denotes the (linear, continuous)
control operator, and

Uad is assumed to be a closed and convex subset of the Hilbert space U.

Later we will also add state constraints y ∈ Yad.
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Exercises 1

Explain the spaces L2(Ω), H1
0 (Ω), and H−1(Ω).

In which sense is the PDE understood if the solution space is H1
0 (Ω)?

How is the weak solution of the Poisson problem de�ned?

Does the Poisson equation posess a unique solution?

Does problem (P) admit a solution for all α ≥ 0?
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Examples for control spaces and operators

1 U := L2(Ω), B : L2(Ω)→ H−1(Ω) Injection, ,Uad := {v ∈ L2(Ω); a ≤
v(x) ≤ b a.e. in Ω}, a, b ∈ L∞(Ω).

2 U := H1(Ω), B : H1(Ω)→ H−1(Ω) Injection, ,Uad := {v ∈ L2(Ω); a ≤
v(x) ≤ b a.e. in Ω}, a, b ∈ L∞(Ω).

3 U := Rm, B : Rm → H−1(Ω), Bu :=
m∑
j=1

ujFj , Fj ∈ H−1(Ω) given ,

Uad := {v ∈ Rm ; aj ≤ vj ≤ bj}, a < b.
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Reduced cost functional

We have that

the Poisson problem for given right hand side Bu admits a unique solution
y = y(u),

Problem (P) admits a unique solution (y , u) ∈ H1
0 (Ω)× U, with y = y(u).

Thus, problem (P) can be equivalently rewritten as the optimization problem

(P̂) min
u∈Uad

Ĵ(u) (0.2)

for the reduced functional

Ĵ(u) := J(y(u), u) ≡ J(SBu, u)

over the set Uad, where S : Y ∗ → Y denotes the weak solution operator
associated with −∆.
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First order necessary optimality condition

The �rst order necessary (and here also su�cient) optimality conditions
take the form

〈Ĵ′(u), v − u〉U∗,U ≥ 0 for all v ∈ Uad. (0.3)

Here
Ĵ′(u) = α(u, ·)U + B∗S∗(SBu − z) ≡ α(u, ·)U + B∗p,

with

p := S∗(SBu − z) ∈ Y ∗∗ denoting the adjoint variable. The function p in
our re�exive setting satis�es

−∆p = y − z in Ω,
p = 0 on ∂Ω.

With the Riesz isomorphism R : U∗ → U and the orthogonal projection
PUad

: U → Uad we have that (0.4) is equivalent to

u = PUad

(
u − σ∇Ĵ(u)

)
for all σ > 0, (0.4)

where
∇Ĵ(u) = RĴ′(u)

denotes the gradient of Ĵ(u).
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Exercises 2

Prove the optimality condition.

How can we obtain the formula for Ĵ′(u)?

Discuss the adjoint variable p?

How is the Riesz isomorphism in a Hilbert space de�ned?

Discuss examples for the Riesz isomorphism, e.g. the cases U = L2(Ω) and
U = H1

0 (Ω).

Is the gradient smoother than the derivative?

How is the orthogonal projection PUad : U → Uad de�ned?

How can we obtain the �xpoint formula for the optimal control?
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To discretize (P) we concentrate on Finite Element approaches and make the
following assumptions.

Assumption

Ω ⊂ Rn denotes a polyhedral domain,

Ω̄ = ∪ntj=1T̄j ,

with admissible quasi-uniform sequences of partitions {Tj}ntj=1 of Ω, i.e. with

hnt := maxj diam Tj and σnt := minj{sup diam K ;K ⊆ Tj} there holds

c ≤
hnt

σnt
≤ C

uniformly in nt with positive constants 0 < c ≤ C <∞ independent of nt.

We abbreviate τh := {Tj}ntj=1.
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In order to tackle (P) numerically we shall distinguish two di�erent approaches.
The �rst is called

First discretize, then optimize,

the second

First optimize, then discretize.

It will turn out that both approaches under certain circumstances lead to the
same numerical results. However, from a structural point of view they are
completely di�erent.

We later will highlight a special variant of the FDTO approach which is
called variational discretization.
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First discretize, then optimize

All quantities in (P) are discretized:

replace Y and U by �nite dimensional subspaces Yh and Ud ,

the set Uad by some discrete counterpart Ud
ad, and

the functionals, integrals and dualities by appropriate discrete surrogates.



Mathematics of PDE constrained optimization
M. Hinze
35/167

Finite element space: For k ∈ N

Wh := {v ∈ C0(Ω̄); v|Tj
∈ Pk(Tj ) for all 1 ≤ j ≤ nt} =: 〈φ1, . . . , φng 〉, and

Yh := {v ∈ Wh, v|∂Ω
= 0} =: 〈φ1, . . . , φn〉 ⊆ Y ,

with some 0 < n < ng .

Ansatz for discrete state: yh(x) =
n∑
i=1

yiφi .
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Discrete control space: with u1, . . . , um ∈ U, we set

Ud := 〈u1, . . . , um〉, and

Ud
ad := Pd

Uad
(Ud ), where

Pd
Uad

: U → Uad is a su�ciently smooth (nonlinear) mapping.

With C ⊂ Rm denoting a convex closed set we assume

Ud
ad =

u ∈ U; u =
m∑
j=1

sju
j , s ∈ C

 .
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Finally let zh := Qhz =
ng∑
i=1

ziφi , where Qh : L2(Ω)→ Wh denotes a continuous

projection operator.

Now we replace problem (P) by

(P(h,d))


min(yh,ud )∈Yh×Ud

J(h,d)(y , u) := 1
2
‖yh − zh‖2L2(Ω)

+ α
2
‖ud‖2U

s.t.
a(yh, vh) = 〈Bud , vh〉Y∗,Y for all vh ∈ Yh,

and
ud ∈ Ud

ad.

(0.5)

Here, we have set a(y , v) :=
∫
Ω

∇y∇vdx.
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Introduce Finite Element matrices:

Sti�ness matrix: A := (aij )
n
i ,j=1, aij := a(φi , φj ),

mass matrix M := (mij )
ng
i ,j=1, mij :=

∫
Ω

φiφjdx, the

control matrix E := (eij )
n,m
i ,j=1, eij = 〈Bu j , φi 〉Y∗,Y , and the

control mass matrix F := (fij )
m
i ,j=1, fij := (u i , u j )U .

Using these quantities allows us to rewrite (P(h,d)) as �nite-dimensional
optimization problem:

(P(n,m))


min(y,s)∈Rn×Rm Q(y , s) := 1

2
(y − z)tM(y − z) + α

2
stFs

s.t.
Ay = Es

and
s ∈ C .

(0.6)

Admissibility is characterized by the closed, convex set C ⊂ Rm .
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Since the matrix A is spd, problem (P(n,m)) is equivalent to minimizing the
reduced functional

Q̂(s) := Q(A−1Es, s)

over the set C .

Problem (P(n,m)) admits a unique solution (y(s), s) ∈ Rn × C which is
characterized by the �nite dimensional variational inequality

(∇Q̂(s), t − s)Rm ≥ 0 for all t ∈ C , (0.7)

with

∇Q̂(s) = αFs + E tA−tM(A−1Es − z) ≡ αFs + E tp,

where
p := A−tM(A−1Es − z).
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Comparing

∇Q̂(s) = αFs + E tA−tM(A−1Es − z) ≡ αFs + E tp

with

∇Ĵ(u) = αu + RB∗S∗(SBu − z) ≡ αu + RB∗p

from the in�nite-dimensional problem, we note that transposition takes the role
of the Riesz isomorphism R,

the matrix F takes the role of the identity in U,

the matrix M takes the role of the identity in L2(Ω),

the matrix E takes the role the control operator B, and

the matrix A−1 that of the solution operator S.

Problem (P(n,m)) now can be solved numerically with the help of appropriate
solution algorithms, which should exploit the structure of the problem. We �x
the following
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Remark

In the First discretize, then optimize approach the discretization of the adjoint
variable p is determined by the test space for the discrete state yh .

In the First optimize, then discretize approach discussed next, this is di�erent.
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Exercises 3

Is the �nite element space Wh a subset of H1(Ω)?

How are the functions φi (i = 1, . . . , ng) de�ned?

Show that the matrices A,M, and F are spd.

Does (Pn,m) admit a unique solution?

What is (0.7) in the case C ≡ Rm?
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First optimize, the discretize

Starting point: the �rst order necessary optimality conditions for problem (P);

(OS)


−∆y = Bu in Ω,

y = 0 on ∂Ω,
−∆p = y − z in Ω,

p = 0 on ∂Ω,
(αu + RB∗p, v − u)U ≥ 0 for all v ∈ Uad.

(0.8)

Discretize everything related to the state y , the control u, and to
functionals, integrals, and dualities as in the First discretize, then optimize
approach.

In addition, we have the freedom to also select an appropriate discretization
of the adjoint variable p.
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For p we choose continuous Finite Elements of order l on τ , which leads to the
Ansatz

ph(x) =

q∑
i=1

piχi (x),

where
〈χ1, . . . , χq〉 ⊂ Y

denotes the Ansatz space for the adjoint variable.

Matrices:

adjoint sti�ness matrix Ã := (ãij )
q
i ,j=1, ãij := a(χi , χj ),

the matrix Ẽ := (ẽij )
q,m
i ,j=1, ẽij = 〈Bu j , χi 〉Y∗,Y ,

and the matrix T := (tij )
n,q
i ,j=1, tij :=

∫
Ω

φiχjdx.
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The discrete analogon to (OS) reads

(OS)(n,q,m)


Ay = Es,

Ãp = T (y − z),
(αFs + Ẽ tp, t − s)Rm ≥ 0 for all t ∈ C .

(0.9)

Since the matrices A and Ã are spd, this system is equivalent to the variational
inequality

(αFs + Ẽ t Ã−1T (A−1Es − z), t − s)Rm ≥ 0 for all t ∈ C . (0.10)
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Examples

1 U := L2(Ω), B : L2(Ω)→ H−1(Ω) Injection, ,Uad := {v ∈ L2(Ω); a ≤
v(x) ≤ b a.e. in Ω}, a, b ∈ L∞(Ω). Further let k = l = 1 (linear Finite

Elements for y and p), Ud := 〈u1, . . . , unt〉, where uk|Ti
= δki

(k, i = 1, . . . , nt) are piecewise constant functions (i.e. m = nt),

C :=
nt∏
i=1

[ai , bi ], where ai := a(barycenter(Ti )), bi := b(barycenter(Ti )).

2 As in 1., but Ud := 〈φ1, . . . , φng 〉 (i.e. m = ng), C :=
ng∏
i=1

[ai , bi ], where

ai := a(Pi ), bi := b(Pi ), with Pi (i = 1, . . . , ng) denoting the vertices of
the triangulation τ .

3 As in 1., but U := Rm, B : Rm → H−1(Ω), Bu :=
m∑
j=1

ujFj , Fj ∈

H−1(Ω) given ,Uad := {v ∈ Rm ; aj ≤ vj ≤ bj}, a < b, Ud := 〈e1, . . . , em〉

with ei ∈ Rm (i = 1, . . . ,m) denoting the i−th unitvector, C :=
ng∏
i=1

[ai , bi ]

≡ Ud .
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Discussion and implications

Choosing the same Ansatz spaces for the state y and the adjoint variable p
in the First optimize, then discretize approach leads to an optimality
condition which is identical to that of the First discretize, then optimize
approach, since then T ≡ M.

Choosing a di�erent approach for p in general leads to a non-symmetric
matrix T , with the consequence that the matrix αF + Ẽ t Ã−1TA−1E no
longer represents a symmetric matrix (and thus no Hessian), and

the expression αFs + Ẽ t Ã−1T (A−1Es − z) in general does not represent a
gradient.

There is up to now no general recipe which approach has to be preferred,
and it should depend on the application and computational resources which
approach to take for tackling the numerical solution of the optimization
problem.

However, the numerical approach taken should to some extent re�ect and
preserve the structure which is inherent in the in�nite dimensional
optimization problem (P).
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Structure exploiting discretization

This can be best explained in the case without control constraints, i.e. Uad ≡ U.
Then the �rst order necessary optimality conditions for (P) read

∇Ĵ(u) = αu + RB∗S∗(SBu − z) ≡ αu + RB∗p = 0 in U.

For proceeding on the numerical level this identity clearly gives us the advice to
relate to each other the discrete Ansätze for the control u and the adjoint
variable p.

This remains true also in the presence of control constraints, for which this
smooth operator equation has to be replaced by the nonsmooth operator
equation

u = PUad (u − σ(αu + RB∗p)) ≡σ= 1
α
PUad

(
−

1

α
RB∗p

)
in U, (0.11)

where PUad denotes the orthogonal projection in U onto the admissible set of
controls.

In any case, optimal control and corresponding adjoint state are related to each
other, and this should be re�ected by numerical approaches to be taken for the
solution of problem (P).
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Remark

Controls should be discretized conservative, i.e. according to the relation between
the adjoint state and the control given by the �rst order optimality condition.
This rule should be obeyed in both, the First discretize, then optimize, and in the
First optimize, then discretize approach.
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A structure exploiting discretization concept

Let us closer investigate (0.11) in terms of the simple �xpoint iteration given
next.

Algorithm

u given

do until convergence

u+ = PU
ad

(
− 1
α
RB∗p(u)

)
, u = u+.

In this algorithm p(u) is obtained by �rst solving y = SBu, and then
p = S∗(SBu − z).
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To obtain a discrete algorithm we now replace the solution operators S, S∗ by
their discrete counterparts Sh, S

∗
h obtained by a Finite Element discretization,

say. The discrete algorithm then reads

Algorithm

u given

do until convergence

u+ = PU
ad

(
− 1
α
RB∗ph(u)

)
, u = u+,

where ph(u) is obtained by �rst solving y = ShBu, and then solving
ph = S∗h (ShBu − z).

We note that in this algorithm the control is not discretized. Only state and
adjoint state are discretized.
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Two questions immediately arise.

1 Is Algorithm 4 numerically implementable?

2 Do Algorithms 3, 4 converge?

Let us �rst discuss question (2). Since both algorithms are �xpoint algorithms,
su�cient conditions for convergence are given by the relations

α > ‖RB∗S∗SB‖L(U)

for Algorithm 3, and by

α > ‖RB∗S∗h ShB‖L(U)

for Algorithm 4, since PUad : U → Uad denotes the orthogonal projection which
is Lipschitz continuous with Lipschitz constant L = 1.
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Question (1) admits the answer Yes, whenever for given u it is possible to
numerically evaluate the expression

PUad

(
−

1

α
RB∗ph(u)

)

in the i − th iteration of Algorithm 4 with an numerical overhead which is
independent of the iteration counter of the algorithm.
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To illustrate this fact let us consider the case U = L2(Ω) and B : U → H−1(Ω)
denoting the injection, with a ≡ const1, b ≡ const2. In this case it is easy to
verify that

PUad (v) (x) = P[a,b] (v(x)) = max {a,min {v(x), b}} ,

so that in every iteration of Algorithm 4 we have to form the control

u+(x) = P[a,b]

(
−

1

α
ph(x)

)
, (0.12)

which for in the onedimensional setting is illustrated in Figure 54.

b

a

FE DiscretizationContinuous setting Active set Active set

P(−p/alpha)

P(−p_h/alpha)
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A 1�d example
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A 2�d example
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To construct the function u+ it is su�cient to characterize the intersection of
the bounds a, b (understood as constant functions) and the function − 1

α
ph on

every simplex T of the triangulation τ = τh . For piecewise linear �nite element
approximations of p we have the following theorem.

Theorem

Let u+ denote the function of (0.12), with ph denoting a piecewise linear, continuous
�nite element function, and constant bounds a < b. Then there exists a partition
κh = {K1, . . .Kl(h)} of Ω such that u+ restricted to Kj (j = 1, . . . , l(h)) is a

polynomial either of degree zero or one. For l(h) there holds

l(h) ≤ Cnt(h),

with a positive constant C ≤ 3 and nt(h) denoting the number of simplexes in τh . In
particular, the vertices of the discrete active set associated to u+ need not coincide
with �nite element nodes.
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Proof: Abbreviate ξah := − 1
α
p∗h − a, ξbh := b − 1

α
p∗h and investigate the zero

level sets 0ah and 0bh of ξah and ξbh , respectively.

Case n = 1: 0ah ∩ Ti is either empty or a point Sai ∈ Ti . Every point Sai
subdivides Ti into two sub-intervals. Analogously 0bh ∩ Ti is either empty or a

point Sbi ∈ Ti . Further S
a
i 6= Sbi since a < b. The maximum number of

sub-intervals of Ti induced by 0ah and 0bh therefore is equal to three. Therefore,
l(h) ≤ 3nt(h), i.e. C = 3.

Case n ∈ N: 0ah ∩ Ti is either empty or a part of a k−dimensional hyperplane

(k < n) Lai ⊂ Ti , analogously 0
b
h ∩ Ti is either empty or a part of k−dimensional

hyperplane (k < n) Lbi ⊂ Ti . Since a < b the surfaces Lai and Lbi do not
intersect. Therefore, similar considerations as in the case n = 1 yield C = 3.
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It is now clear that the proof of the previous theorem easily extends to
functions ph which are piecewise polynomials of degree k ∈ N, and bounds
a, b which are piecewise polynomials of degree l ∈ N and m ∈ N,
respectively, since the di�erence of a, b and ph in this case also represents a
piecewise polynomial function whose projection on every element can be
(easily ?) characterized.

We now have that Algorithm 4 is numerically implementable, but only
converges for a certain parameter range of α. A locally fast (superlinear)
convergent algorithm for the numerical solution of equation (0.13) is the
semi-smooth Newton method, if the function G is semi-smooth in the sense
of [HIK03],[MU03, Example 5.6].
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Let us recall that (0.11) for every σ > 0 is equivalent to the equation

G(u) = u − PUad

(
u − σ∇Ĵ(u)

)
≡ u − PUad (u − σ(αu + RB∗p)) ≡

≡σ= 1
α
u − PUad

(
−

1

α
RB∗p

)
= 0 in U, (0.13)

so that we may apply a semi-smooth Newton algorithm, or a primal-dual active
set strategy to its numerical solution.

Remark

For the choice σ = 1
α

we in certain situations obtain that the semi-smooth
Newton method and the primal-dual active set strategy are equivalent, and are
both numerically implementable in the discrete case.
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Exercises 4

Why is the orthogonal projection in a Hilbert space Lipschitz continuous
with constant L = 1?

Show for constant box constraints a < b that

PUad (v) (x) = P[a,b] (v(x)) = max {a,min {v(x), b}}

holds.

Why is the bound α > ‖RB∗S∗SB‖L(U) su�cient for convergence of the
�xpoint iteration?
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What is the underlying discrete problem?

Let us de�ne

Ĵh(u) := J(ShBu, u), u ∈ U

and consider the following in�nite dimensional optimization problem

min
u∈Uad

Ĵh(u). (0.14)

According to (0.2) this problem admits a unique solution uh ∈ Uad which is
characterized by the variational inequality

(∇Ĵh(uh), v − uh)U ≥ 0 forall v ∈ Uad, (0.15)



Mathematics of PDE constrained optimization
M. Hinze
63/167

This variational inequality is equivalent to the non-smooth operator equation
(compare (0.13))

Gh(u) = u − PUad

(
u − σ∇Ĵh(u)

)
≡ u − PUad (u − σ(αu + RB∗ph)) ≡σ= 1

α

≡σ= 1
α
u − PUad

(
−

1

α
RB∗ph

)
= 0 in U,

where similar as above

∇Ĵh(u) = αu + RB∗S∗h (ShBu − z) ≡ αu + RB∗ph(u).

The considerations made above now imply that the unique solution uh of the
in�nite dimensional optimization problem (0.14) can be numerically computed
either by Algorithm 4 (for α large enough), or by a semi-smooth Newton method

(which for σ = 1
α

coincides with the primal�dual active set strategy) (since the

function Gh also is semi-smooth), however in both cases without a further
discretization step.
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Primal-dual active set strategy

Solve (B ≡ Id)

(α + S∗h Sh)u + λ̂ = S∗h z = −r
Ψ(u, λ̂; u) := max(λ̂ + σ(u − b), 0) + min(λ̂ + σ(u − a), 0) = λ̂

Primal-dual active set strategy:

Initialize u0 = 0, λ̂0 = −r ; set l = 1, ε > 0 small.

Loop l

Aa
l := {λ̂l−1 + σ(ul−1 − a) < 0} (= {−r − S∗h Shul−1 − αa < 0}, if

σ = α),

Ab
l := {λ̂l−1 + σ(ul−1 − b) > 0} (= {−r − S∗h Shul−1 − αb > 0}, if

σ = α),

Il := Ω \ (Aa
l ∪ A

b
l ).

l ≥ 2, Aa
l = Aa

l−1, A
b
l = Ab

l−1, or ‖Ψ(ul−1, λ̂l−1)− λ̂l−1‖ ≤ ε:
u = ul−1, λ̂ = λ̂l , RETURN.

Otherwise
ul = a on Aa

l , ul = b on Ab
l , λ̂l = 0 on Il

Solve for ul |Il , λ̂l |Aa
l
∪Ab

l

(α + S∗h Sh)ul + λ̂l = −r
l := l + 1.
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Semi-smooth Newton method

u given, solve until convergence

G ′h(u)u+ = −Gh(u) + G ′h(u)u, u = u+.

1. This algorithm is implementable whenever the �x�point iteration is, since

− Gh(u) + G ′h(u)u =

= −PUad

(
−

1

α
RB∗ph(u)

)
−

1

α
P′Uad

(
−

1

α
RB∗ph(u)

)
RB∗S∗h ShBu.

2. In certain settings this algorithm for every α > 0 is locally fast convergent.
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Neumann (Robin) boundary control

U = L2(Γ), Bu :=
∫

Γ u · dΓ ∈ (H1)∗(Ω), R : U∗ → U with R(u, ·)U = u.

Discrete weak form

a(yh, vh) =

∫
Γ
uvhdΓ for all vh ∈ Wh,

discrete adjoint equation

a(vh, ph) =

∫
Ω

(yh − z)vhdx for all vh ∈ Wh.

Thus

RB∗ph = (ph)Γ piecewise polynomial, continuous on the boundary grid.

With Uad = {a ≤ u ≤ b} we have for the variational discrete uh ∈ Uad

uh = max{a,min{−
1

α
(ph)Γ, b}} simple cut�o� at the bounds.
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Dirichlet boundary control

U = L2(Γ), Bu := −
∫

Γ u∂η · dΓ ∈ (H1
0 (Ω) ∩ H2(Ω))∗, R : U∗ → U with

R(u, ·)U = u.

Discrete weak form; �nd yh ∈ Wh with

a(yh, vh) = 0 for all vh ∈ Yh, and yh = Π(u) ∈ Trace(Wh),

where Π denotes the L2-projection. Discrete adjoint equation for ph ∈ Yh

a(vh, ph) =

∫
Ω

(yh − z)vhdx for all vh ∈ Yh.

Thus

uh = PUad
(
1

α
κh),

where κh ∈ Trace(Wh) denotes the discrete adjoint �ux satisfying∫
Γ
κhwhdΓ = a(wh, ph)−

∫
Ω

(yh − z)whdx for all wh in Wh.

With Uad = {a ≤ u ≤ b} we have for the variational discrete uh ∈ Uad

uh = max{a,min{
1

α
κh, b}} simple cut�o� at the bounds.
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Dirichlet boundary control
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Exercises 5

In the case of box constraints, what is a canonical choice of P′Uad
?

Π : L2(Γ)→ Wh , the L
2−projection, is how de�ned?

Show that in the case of Dirichlet boundary control

uh = PUad
(
1

α
κh),

where κh ∈ Trace(Wh) denotes the discrete adjoint �ux satisfying∫
Γ
κhwhdΓ = a(wh, ph)−

∫
Ω

(yh − z)whdx for all wh in Wh.

If one would like to approximate the Dirichlet boundary control problem
with piecewise constant controls. How could one achieve this? Tip:
Discretize the state with mixed �nite elements (lowest order
Raviart-Thomas elements).
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Error estimates

Theorem

Let u denote the unique solution of (0.2), and uh the unique solution of (0.14). Then
there holds

α‖u − uh‖2U +
1

2
‖y(u)− yh‖2 ≤

≤ 〈B∗(p(u)− p̃h(u)), uh − u〉U∗,U +
1

2
‖y(u)− yh(u)‖2, (0.16)

where p̃h(u) := S∗h (SBu − z), yh(u) := ShBu, and y(u) := SBu.
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Proof: We switch back to the variational inequalities

〈Ĵ′(u), v − u〉U∗,U ≥ 0 forall v ∈ Uad,

and

〈Ĵ′h(uh), v − uh〉U∗,U ≥ 0 forall v ∈ Uad.

Crucial:
The unique solution u of the continuous problem (upper inequality) is an
admissible test function for the discrete problem (lower inequality).

Let us emphasize, that this is di�erent for approaches, where the control space is
discretized explictly. In this case we may only expect that uh is an admissible
test function for the continuous problem (if ever).
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So let us test the optimality condition for u with uh , and the optimality condition
for uh with u, and then add the resulting variational inequalities. This leads to

〈α(u − uh) + B∗S∗(SBu − z)− B∗S∗h (ShBuh − z), uh − u〉U∗,U ≥ 0.

This inequality is equivalent to

α‖u − uh‖2U ≤ 〈B
∗(p(u)− p̃h(u)) + B∗(p̃h(u)− ph(uh)), uh − u)〉U∗,U .

Let us investigate the second addend on the right hand side of this inequality.
By de�nition of the adjoint variables there holds

〈B∗(p̃h(u)− ph(u), uh − u〉U∗,U = 〈p̃h(u)− ph(u),B(uh − u)〉Y ,Y∗ =

= a(yh − yh(u), p̃h(u)− ph(u)) =

∫
Ω

(yh(uh)− yh(u))(y(u)− yh(u))dx =

= −‖yh − y‖2 +

∫
Ω

(y − yh)(y − yh(u))dx ≤ −
1

2
‖yh − y‖2 +

1

2
‖y − yh(u)‖2

so that the claim of the theorem follows.
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What are the consequences of this Theorem?

From the structure of this estimate we immediately infer that an error estimate
for ‖u − uh‖U is at hand, if

an error estimate for ‖B∗(p(u)− p̃h(u)‖U∗ is available, and

an error estimate for ‖y(u)− yh(u)‖L2(Ω) is available.

This means, that the error of ‖u − uh‖U is completely determined by the
approximation properties of the discrete solution operators Sh and S∗h .
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Remark

The error ‖u − uh‖U between the solutions u and uh is completely determined by the
approximation properties of the discrete solution operators Sh and S∗h .
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Let us revisit our �rst example with U = L2(Ω) and B denoting the injection.
Then y = SBu ∈ H2(Ω) ∩ H1

0 (Ω) (if for example Ω ∈ C1,1 or Ω polygonal,
convex). Let us estimate the right side of our error estimate. There holds

(RB∗(p(u)− p̃h(u)), u − uh)U =

∫
Ω

(p(u)− p̃h(u))(u − uh)dx ≤

≤ ‖p(u)− p̃h(u)‖L2(Ω)‖u − uh‖L2(Ω) ≤

≤ ch2‖y(u)− z‖L2(Ω)‖u − uh‖L2(Ω),

and

‖y(u)− yh(u)‖L2 ≤ ch2‖u‖L2(Ω).
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Theorem

Let u and uh denote the solutions of the continuous and the discrete problem,
respectively in the setting of the �rst example,(1). Then there holds

‖u − uh‖L2(Ω) ≤ ch2
{
‖y(u)− z‖L2(Ω) + ‖u‖L2(Ω)

}
.

And this theorem is also valid for the setting of this example,(2) if we require
Fj ∈ L2(Ω) (j = 1, . . . ,m). This is an easy consequence of the fact that for a
function z ∈ Y there holds B∗z ∈ Rm with (B∗z)i = 〈Fi , z〉Y∗,Y for
i = 1, . . . ,m.
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Theorem

Let u and uh denote the solutions of problem (0.2) and (0.14), respectively in the
setting of Example ??(2). Then there holds

‖u − uh‖Rm ≤ ch2
{
‖y(u)− z‖L2(Ω) + ‖u‖Rm

}
,

where the positive constant now depends on the functions Fj (j = 1, . . . ,m).
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Proof:

It su�ces to estimate

(RB∗(p(u)− p̃h(u)), u − uh)Rm =

=
m∑
j=1


∫
Ω

Fj (p(u)− p̃h(u))dx(u − uh)j

 ≤
≤ ‖p(u)− p̃h(u)‖L2(Ω)

 m∑
j=1

∫
Ω

|Fj |2dx

 1
2

‖u − uh‖Rm ≤

≤ ch2‖y(u)− z‖L2(Ω)‖u − uh‖Rm .

The reminder terms can be estimated as above.
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Numerical example distributed control

We consider our optimal control problem with Ω denoting the unit circle,

Uad := {v ∈ L2(Ω);−0.2 ≤ u ≤ 0.2} ⊂ L2(Ω)

and B : L2(Ω)→ Y ∗(≡ H−1(Ω)) the injection. Further we set
z(x) := (1− |x|2)x1 and α = 0.1. The numerical discretization of state and
adjoint state is performed with linear, continuous �nite elements.

Here we consider the scenario that the exact solution of the problem is not
known in advance (although it is easy to construct example problems where
exact state, adjoint state and control are known, see [T05]). Instead we use the

numerical solutions computed on a grid with h = 1
256

as references.
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h = 1
4
, α = 0.01
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To present numerical results it is convenient to introduce the Experimental Order
of Convergence, brief EOC, which for some positive error functional E is de�ned
by

EOC :=
ln E(h1)− ln E(h2)

ln h1 − ln h2
.

EOC for the state y
h EyL2 Eysup Eysem EyH1

EOCyL2 EOCysup EOCyH1
1/1 1.47e-2 1.63e-2 5.66e-2 5.85e-2 - - -
1/2 5.61e-3 6.02e-3 2.86e-2 2.92e-2 1.39 1.44 1.00
1/4 1.47e-3 1.93e-3 1.38e-2 1.39e-2 1.93 1.64 1.08
1/8 3.83e-4 5.02e-4 6.89e-3 6.90e-3 1.94 1.95 1.01
1/16 9.65e-5 1.26e-4 3.44e-3 3.45e-3 1.99 2.00 1.00
1/32 2.40e-5 3.14e-5 1.71e-3 1.71e-3 2.01 2.00 1.01
1/64 5.73e-6 7.78e-6 8.37e-4 8.37e-4 2.06 2.01 1.03
1/128 1.16e-6 1.85e-6 3.74e-4 3.74e-4 2.30 2.07 1.16
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EOC for the adjoint state p
h EpL2 Epsup Epsem EpH1

EOCpL2 EOCpsup EOCpH1
1/1 2.33e-2 2.62e-2 8.96e-2 9.26e-2 - - -
1/2 6.14e-3 7.75e-3 4.36e-2 4.40e-2 1.92 1.76 1.07
1/4 1.59e-3 2.50e-3 2.17e-2 2.18e-2 1.95 1.64 1.02
1/8 4.08e-4 6.52e-4 1.09e-2 1.09e-2 1.97 1.94 0.99
1/16 1.03e-4 1.64e-4 5.48e-3 5.48e-3 1.99 1.99 1.00
1/32 2.54e-5 4.14e-5 2.73e-3 2.73e-3 2.01 1.99 1.01
1/64 6.11e-6 1.04e-5 1.33e-3 1.33e-3 2.06 1.99 1.03
1/128 1.27e-6 2.61e-6 5.96e-4 5.96e-4 2.27 1.99 1.16
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EOC for the control u
h EuL2 Eusup Eusem EuH1

EOCuL2 EOCusup EOCuH1
1/1 2.18e-1 2.00e-1 8.66e-1 8.93e-1 - - -
1/2 5.54e-2 7.75e-2 4.78e-1 4.81e-1 1.97 1.37 0.89
1/4 1.16e-2 2.30e-2 2.21e-1 2.22e-1 2.25 1.75 1.12
1/8 3.02e-3 5.79e-3 1.15e-1 1.15e-1 1.94 1.99 0.95
1/16 7.66e-4 1.47e-3 6.09e-2 6.09e-2 1.98 1.98 0.92
1/32 1.93e-4 3.67e-4 2.97e-2 2.97e-2 1.99 2.00 1.03
1/64 4.82e-5 9.38e-5 1.41e-2 1.41e-2 2.00 1.97 1.07
1/128 1.17e-5 2.37e-5 6.40e-3 6.40e-3 2.04 1.98 1.14

EOC for the control u, conventional approach
h EuL2 Eusup Eusem EuH1

EOCuL2 EOCusup EOCuH1
1/1 2.18e-1 2.00e-1 8.66e-1 8.93e-1 - - -
1/2 6.97e-2 9.57e-2 5.10e-1 5.15e-1 1.64 1.06 0.79
1/4 1.46e-2 3.44e-2 2.39e-1 2.40e-1 2.26 1.48 1.10
1/8 4.66e-3 1.65e-2 1.53e-1 1.54e-1 1.65 1.06 0.64
1/16 1.57e-3 8.47e-3 9.94e-2 9.94e-2 1.57 0.96 0.63
1/32 5.51e-4 4.33e-3 6.70e-2 6.70e-2 1.51 0.97 0.57
1/64 1.58e-4 2.09e-3 4.05e-2 4.05e-2 1.80 1.05 0.73
1/128 4.91e-5 1.07e-3 2.50e-2 2.50e-2 1.68 0.96 0.69
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Ea := |(A \ Ah) ∪ (Ah \ A)|

denotes the symmetric di�erence of discrete and continuous active sets. EOC
with the corresponding subscripts denotes the associated experimental order of
convergence.

EOC for active set
conventional approach our approach

h Ea EOCa Ea EOCa
1/1 5.05e-1 - 5.11e-1 -
1/2 5.05e-1 0.00 3.38e-1 0.60
1/4 5.05e-1 0.00 1.25e-1 1.43
1/8 2.60e-1 0.96 2.92e-2 2.10
1/16 1.16e-1 1.16 7.30e-3 2.00
1/32 4.98e-2 1.22 1.81e-3 2.01
1/64 1.88e-2 1.41 4.08e-4 2.15
1/128 6.98e-3 1.43 8.51e-5 2.26
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Postprocessing

Let us note that similar numerical results can be obtained by an approach of
Meyer and Rösch presented in [MR04]. The authors in a preliminary step
compute a piecewise constant optimal control ū and with its help compute in a
post-processing step a projected control u through

u = PUad(−
1

α
RB∗ph(ū)).

The numerical analysis requires the assumption, that the measure of the set of
elements intersected by the boarder of the active set of the control can be
bounded in terms of the grid size.
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Bang�Bang control

min
u∈Uad

J(u) =
1

2

∫
Ω
|y − y0|2

subject to y = G(u).

Here,
Uad := {v ∈ L2(Ω); a ≤ u ≤ b} ⊆ L2(Ω)

with a < b constants, and y = G(Bu) i�

−∆y = u in Ω, and y = 0 on ∂Ω.

More general elliptic operators may be considered, and also control operators
which map abstract controls to feasible right-hand sides of the elliptic equation.
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Existence and uniqueness, optimality conditions

The optimal control problems admits a unique solution.

The function u ∈ Uad is a solution of the optimal control problem i� there exists
an adjoint state p such that y = G(u), p = G(y − y0) and

(p, v − u) ≥ 0 for all v ∈ Uad .

There holds

u(x)

 = a, p(x) > 0,
∈ [a, b], p(x) = 0,
= b, p(x) < 0.

Strict complementarity requirement for the solution u:

∃C > 0∀ε > 0 : L({x ∈ Ω̄; |p(x)| ≤ ε}) ≤ Cε
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Variational discretization

Discrete optimal control problem:

min
u∈Uad

Jh(u) :=
1

2

∫
Ω
|yh − y0|2

subject to yh = Gh(u).

Here, Gh(u) denotes the piecewise linear and continuous �nite element
approximation to y(u), i.e.

a(yh, vh) := (∇yh,∇vh) = (u, vh) for all vh ∈ Xh,

where on a given, quasi-uniform triangulation Th
Xh := {w ∈ C0(Ω̄);w|∂Ω

= 0,w|T linear for all T ∈ Th}.

This problem is still ∞−dimensional.

Ritz projection Rh : H1
0 (Ω)→ Xh ,

a(Rhw , vh) = a(w , vh) for all vh ∈ Xh
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Existence and uniqueness, optimality conditions for discrete problem

The variational-discrete optimal control problems admits a solution. The solution
is unique, if meas{ph = 0} = 0.

The function uh ∈ Uad is a solution of the optimal control problem i� there
exists an adjoint state ph such that yh = Gh(uh), ph = Gh(yh − y0) and

(ph, v − uh) ≥ 0 for all v ∈ Uad .

There holds

uh(x)

 = a, ph(x) > 0,
∈ [a, b], ph(x) = 0,
= b, ph(x) < 0.
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Error estimate

Let u, uh denote the unique solutions of the optimal control problems with
corresponding states y = G(u) and yh = Gh(uh), resp. Then

‖u − uh‖L1 , ‖y − yh‖, ‖p − ph‖L∞ ≤ C
{
h2 + ‖p − Rhp‖L∞

}
Sketch of proof:

‖u − uh‖L1 ≤ (b − a)L({p > 0, ph ≤ 0} ∪ {p < 0, ph ≥ 0})
{p > 0, ph ≤ 0} ∪ {p < 0, ph ≥ 0} ⊆ {|p(x)| ≤ ‖p − ph‖∞} ⇒
‖u − uh‖L1 ≤ C‖p − ph‖∞
‖p − ph‖∞ ≤ ‖p − Rhp‖∞ + ‖Rhp − ph‖∞
‖Rhp − ph‖∞ ≤ C‖y − yh‖.
Combine these estimates with (p, uh − u) ≥ 0 and (ph, u − uh) ≥ 0 (note
that u is admissible as testfunction for the discrete problem!).
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Numerical example with 2 switching points
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Experimental order of convergence:

Active set 3.00073491, (here ≈) ‖u − uh‖L1 : 3.00077834
Function values 1.99966106

‖p − ph‖L∞ : 1.99979367

‖y − yh‖L∞ : 1.9997965

‖p − ph‖L2 : 1.99945711
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Homotopy in α with semi�smooth Newton, Tröltzsch checkerboard

D. & G. Wachsmuth (ESAIM: COCV 2011 (Preprint 2009)), von Daniels
(Diploma Thesis 2010):

‖u0 − uα‖ ∼
√
α,

‖uα − uα,h‖ ∼ h2α−1, thus

‖u0 − uα,h‖ ∼ h
2
3

u(x) = −sign p(x), p(x) = −
1

128π2
sin(8πx1) sin(8πx2), y(x) = sin(πx1) sin(πx2).

Loop i ‖u − uh‖L1 ‖u − uh‖L2 EOCL1(u) EOCL2(u) Nit
3 2.5008e-001 4.7416e-001 1.10 0.61 4
4 1.2045e-001 3.4864e-001 1.05 0.44 5
5 3.6487e-002 1.9368e-001 1.72 0.85 4
6 5.8124e-003 6.2070e-002 1.33 0.82 3
7 2.1287e-003 3.7590e-002 1.45 0.72 3

mean 1.33 0.69
Numerical example by Nicolaus von Daniels
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Checkerboard example, plots
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Time�dependent problems

For the time�dependent case we sketch the analysis of Discontinuous Galerkin
approximations w.r.t. time for an abstract linear�quadratic model problem. The
underlying analysis turns out to be very similar to that of the previous section for
the stationary model problem.

Let V ,H denote separable Hilbert spaces, so that (V ,H = H∗,V ∗) forms a
Gelfand triple. We denote by a : V × V → R a bounded, coercive (and
symmetric) bilinear form, and again by U the Hilbert space of controls, and by
B : U → L2(V ∗) the linear control operator. Here, T > 0. For y0 ∈ H we
consider the state equation

T∫
0

〈yt , v〉V∗,V + a(y , v)dt =
T∫
0

〈(Bu)(t), v〉V∗,V dt ∀ v ∈ L2(V ),

(y(0), v)H = (y0, v)H ∀ v ∈ V ,

 :⇔ y = T Bu,

which for every u ∈ U admits a unique solution
y = y(u) ∈ W := {w ∈ L2(V ),wt ∈ L2(V ∗)}.
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Optimization problem

(TP)

{
min(y,u)∈W×Uad J(y , u) := 1

2
‖y − z‖2

L2(H)
+ α

2
‖u‖2U

s.t. y = T Bu,
(0.17)

where Uad ⊆ U denotes a closed, convex subset. Introducing the reduced cost
functional

Ĵ(u) := J(y(u), u),

the necessary (and in the present case also su�cient) optimality conditions take
the form

〈Ĵ′(u), v − u〉U∗,U ≥ 0 for all v ∈ Uad.

Here
∇Ĵ(u) = αu + B∗p(y(u)),

where the adjoint state p solves the adjoint equation

T∫
0

〈−pt ,w〉V∗,V + a(w , p)dt =
T∫
0

(y − z,w)H ∀w ∈ W ,

(p(T ), v)H = 0, v ∈ V .

This variational inequality is equivalent to the semi�smooth operator equation

u = PUad

(
−

1

α
RB∗p(y(u))

)
.
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Discretization

Let Vh ⊂ V denote a �nite dimensional subspace, and let
0 = t0 < t1 < · · · < tm = T denote a time grid with grid width δt. We set
In := (tn−1, tn] for n = 1, . . . ,m and seek discrete states in the space

Vh,δt := {φ : [0,T ]× Ω→ R, φ(t, ·)|Ω̄ ∈ Vh, φ(·, x)|In ∈ Pr for n = 1, . . . ,m}.

i.e. yh,δt is a polynomial of degree r ∈ N w.r.t. time. Possible choices of Vh in
applications include polynomial �nite element spaces, and also wavelet spaces,
say. We de�ne the discontinuous Galerkin w.r.t. time approximation
(dG(r)-approximation) ỹ = yh,δt(u) ≡ Th,δtBu ∈ Vh,δt of the state y as unique
solution of

A(ỹ , v) :=
m∑
n=1

∫
In

(ỹt , v)H + a(ỹ , v)dt +
m∑
n=1

([ỹ ]n−1, vn−1+)H + (ỹ0+, v0+)H =

= (y0, v
0+)H +

T∫
0

〈(Bu)(t), v〉V∗,V dt for all v ∈ Vh,δt . (0.18)

Here,

vn+ := lim
t↘tn

v(t, ·), vn− := lim
t↗tn

v(t, ·), and [v ]n := vn+ − vn−.
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Discrete optimal control problem

The discrete counterpart of the optimal control problem reads for the variational
approach

(Ph,δt) min
u∈Uad

Ĵh,δt(u) := J(yh,δt(u), u)

and it admits a unique solution uh,δt ∈ Uad. We further have

∇Ĵh,δt(v) = αv + B∗ph,δt(yh,δt(v)),

where ph,δt(yh,δt(v)) ∈ Vh,δt denotes the unique solution of

A(v , ph,δt) =

T∫
0

(yh,δt − z, v)Hdt for all v ∈ Vh,δt .

Further, the unique discrete solution uh,δt satis�es

〈uh,δt + B∗ph,δt , v − uh,δt〉U∗,U ≥ 0 for all v ∈ Uad.

As in the continuous case this variational inequality is equivalent to a
semi�smooth operator equation, namely

uh,δt = PUad

(
−

1

α
RB∗ph,δt(yh,δt(uh,δt))

)
.
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Error estimate

Theorem

Let u, uh,δt denote the unique solutions of (P) and (Ph,δt), respectively. Then

α‖u − uh,δt‖2U + ‖yh,δt(uh,δt)− yh,δt(u))‖2
L2(H)

≤

≤ 〈B∗(p(u)− p̃h,δt(u)), uh,δt − u〉U∗,U + ‖y(u)− yh,δt(u)‖2
L2(H)

, (0.19)

where p̃h,δt(u) := T ∗h,δt(T Bu − z), yh,δt(u) := Th,δtBu, and y(u) := T Bu.

As a result of estimate (0.19) we have that error estimates for the variational
discretization are available if error estimates for the dg(r)-approximation to the
state and the adjoint state are available. With dG(0) in time and piecewise
linear and continuous �nite elements in space one gets

α‖u − uh,δt‖2U + ‖yh,δt(uh,δt)− yh,δt(u))‖2
L2(H)

≤ C{δt + h2}.
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Incorporation of state constraints

Optimal control of pdes with pointwise constraints:

min
u∈Uad,y∈Yad

J(y , u) s.t. PDE(y) = B(u)

Analysis: Casas 85,93 (pointwise state constraints), Casas & Fernandez 93
(pointwise constraints on gradient)

Numerical analysis (pointwise state constraints):

A priori:

Original problem: Casas & Mateos; Deckelnick & H.; Meyer;....
Ralaxation: Group of Rösch; Group of Tröltzsch; Hintermüller & H.; H.
& Meyer; H. & Schiela; ...

A posteriori: Benedix, Vexler & Wollner; Günther & H.; Hintermüller,
Hoppe & Kieweg.

Numerical analysis (pointwise constraints on gradient): Deckelnick, Günther, &
H.
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State and control constraints

Model problem

min
u∈Uad

J(u) =
1

2

∫
D

|y − z|2 +
α

2
‖u‖2U

subject to y = G(Bu) and y ≤ b in D.

Here, Uad ⊆ U closed and convex, α > 0, z, b, su�ciently smooth, and
y = G(Bu) i�

Ay = Bu in D, plus b.c. (plus i.c.)

elliptic case: D = Ω and Ay := −
∑d

i ,j=1 ∂xj
(
aij yxi

)
+
∑d

i=1 bi yxi + cy

uniformly elliptic operator,

parabolic case: D = (0,T ]× Ω and

Ay := yt −
∑d

i ,j=1 ∂xj
(
aij yxi

)
+
∑d

i=1 bi yxi + cy with strongly elliptic leading
part.

Slater condition: ∃ũ ∈ Uad such that G(Bũ) < b in D̄.
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Optimality conditions (Casas 86,93)

Let u ∈ Uad denote the unique optimal control and y = G(Bu). Then there
exist µ ∈M(D̄) and some p such that there holds∫

D

pAv =

∫
D

(y − z)v +

∫
D̄

vdµ ∀v ∈ X ,

〈B∗p + αu, v − u〉U∗,U ≥ 0 ∀v ∈ Uad ,

µ ≥ 0, y ≤ b in D and

∫
D̄

(b − y)dµ = 0,

where

elliptic case: p ∈ W 1,s(Ω) for all s < d/(d − 1) and X = H2(Ω) with∑d
i ,j=1 aij vxi νj = 0 on ∂Ω,

parabolic case: p ∈ Ls(W 1,σ) for all s, σ ∈ [1, 2) with 2/s + d/σ > d + 1
and X = {v ∈ C0(Q̄); v(0, ·) = 0} ∩ {v ∈ L2(H2), vt ∈ L2(H1)}.
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Discretization � a variational concept

Discrete optimal control problem:

min
u∈Uad

Jh(u) :=
1

2

∫
D

|yh − z|2 +
α

2
‖u‖2U

subject to yh = Gh(Bu) and yh ≤ Ihb.

Here, yh(u) = Gh(Bu) denotes the

p.l. and continuous fe approximation to y(u) (elliptic case),

dg(0) in time and p.l. and continuous fe in space approximation to y(u)
(parabolic case), i.e.

a(yh, vh) = 〈Bu, vh〉 for all vh ∈ Xh.

We do not discretize the control!



Mathematics of PDE constrained optimization
M. Hinze
104/167

Variational versus conventional discretization
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Variational discretization for time-dependent problems

Movie time-dependent problems



Mathematics of PDE constrained optimization
M. Hinze
106/167

Discrete optimality conditions

Let uh ∈ Uad denote the unique variational�discrete optimal control,
yh = G(Buh). There exist µ ∈ Rk and ph ∈ Xh such that with

µh =
∑nv

j=1 µjδxj (elliptic case, xi fe nodes, k = nv),

µh =
∑m

i=1

∑nv
j=1 µijδxj ◦

1
|Ii |
∫
Ii
•dt (parabolic case, xi fe nodes, Ii dg

intervals, k = nv + m),

we have

a(vh, ph) =

∫
D

(yh − z)vh +

∫
D̄

vhdµh ∀vh ∈ Xh,

〈B∗ph + αuh, v − uh〉U∗,U ≥ 0 ∀v ∈ Uad ,

µj ≥ 0, yh ≤ Ihb, and

∫
D̄

(
Ihb − yh

)
dµh = 0.

Here, δx denotes the Dirac measure concentrated at x and Ih is the usual
Lagrange interpolation operator.
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Results

Let uh ∈ Uad denote the variational�discrete optimal solution with corresponding
state yh ∈ Xh and µh ∈M(D̄). Then for h small enough

‖yh‖, ‖uh‖U , ‖µh‖M(D̄) ≤ C .

For the proof a discrete counterpart to the Slater condition is needed, which is
deduced from uniform convergence of the discrete states associated to the Slater
point Bũ.
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Results, cont.

Let u denote the solution of the continuous problem and uh the variational
discrete optimal control. Then

α‖u − uh‖2 + ‖y − yh‖2 ≤

≤ C(‖µ‖M(D̄), ‖µh‖M(D̄))
{
‖y − yh(u)‖∞ + ‖yh(uh)− yh‖∞

}
+

+ C(‖u‖, ‖uh‖)
{
‖y − yh(u)‖ + ‖yh(uh)− yh‖

}
.

Here, yh(u) = Gh(Bu), yh(uh) = G(Buh).

We need uniform estimates for discrete approximations.
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Error estimates, parabolic case

Deckelnick, H. (JCM 2010)

Controls u ∈ L2(0,T )m , and fi ∈ H1(Ω) given actuations.

Bu :=
m∑
i=1

ui (t)fi (x), y0 ∈ H2(Ω).

Then y = G(Bu) ∈ {v ∈ L∞(H2), vt ∈ L2(H1)} and we have with yh = Gh(Bu)
and time stepping δt ∼ h2

‖y − yh‖∞ ≤ C

{
h
√
| log h|, (d = 2)√

h, (d = 3)

This is not an o�-the-shelf result! It yields

α‖u − uh‖2 + ‖y − yh‖2 ≤ C

{
h
√
| log h|, (d = 2)√

h, (d = 3).
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Error estimates, elliptic case

Deckelnick, H. (SINUM 2007, ENUMATH 2007)

Bu ∈ L2(Ω):

‖u − uh‖U , ‖y − yh‖H1 =

{
O(h

1
2 ), if d = 2,

O(h
1
4 ), if d = 3,

Bu ∈ W 1,s(Ω):

‖u − uh‖U , ‖y − yh‖H1 ≤ Ch
3
2
− d

2s

√
| log h|.

Bu ∈ L∞(Ω):
‖u − uh‖U , ‖y − yh‖H1 ≤ Ch| log h|.

U = L2(Ω),Uad = {u ≤ d}, uh p.c.:

‖u − uh‖U , ‖y − yh‖H1 ≤ C

{
h| log h|, if d = 2,√
h, if d = 3.

Similar results obtained by C. Meyer for discrete controls.
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Numerical experiment 1

Ω := B1(0), α > 0,

z(x) := 4 +
1

π
−

1

4π
|x|2 +

1

2π
log |x|, b(x) := |x|2 + 4,

and u0(x) := 4 + 1
4απ
|x|2 − 1

2απ
log |x|.

J(u) :=
1

2

∫
Ω
|y − z|2 +

α

2

∫
Ω
|u − u0|2,

where y = G(u).
Unique solution u ≡ 4 with corresponding state y ≡ 4 and multipliers

p(x) =
1

4π
|x|2 −

1

2π
log |x| and µ = δ0.
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Experimental order of convergence

Recall

EOC =
ln E(h1)− ln E(h2)

ln h1 − ln h2
.

RL ‖u − uh‖ ‖y − yh‖
1 0.788985 0.536461
2 0.759556 1.147861
3 0.919917 1.389378
4 0.966078 1.518381
5 0.986686 1.598421
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State and control for Dirac example
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Relaxing constraints � Lavrentiev (H., Meyer COAP 2008)

Lavrentiev Regularization: relax y ≤ b to λu + y ≤ b (λ > 0). Numerical
analysis yields

Buλ ∈ L2(Ω) uniformly:

‖u − uλh ‖ ∼ ‖u − uλ‖ + ‖uλ − uλh ‖ ∼
√
λ + h1−d/4,

Buλ ∈ W 1,s(Ω) uniformly for all s ∈ (1, d
d−1

):

‖u − uλh ‖ ∼ ‖u − uλ‖ + ‖uλ − uλh ‖ ∼
√
λ + h2−d/2−ε,

Buλ ∈ L∞(Ω),Buλh ∈ L∞(Ω) uniformly:

‖u − uλh ‖ ∼ ‖u − uλ‖ + ‖uλ − uλh ‖ ∼
√
λ + h| log h|.
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Relaxing constraints � penalization (Hintermüller, H.)

Relax y ≤ b with γ
2

∫
Ω |(y − b)+|2dx in cost functional.

Buγ ∈ L2(Ω) uniformly:

‖u − u
γ
h ‖ ∼ ‖u − uγ‖ + ‖uγ − u

γ
h ‖ ∼

∼
(
h1−d/p +

1
√
γ
h−d/2

)1/2

+ h1−d/4,

Buγ ∈ W 1,s(Ω) for all s ∈ (1, d
d−1

) uniformly:

‖u − u
γ
h ‖ ∼ ‖u − uγ‖ + ‖uγ − u

γ
h ‖ ∼

∼
(
h1−d/p +

1
√
γ
h−d/2

)1/2

+ h2−d/2−ε,

Buγ ∈ L∞(Ω),Buγh ∈ L∞(Ω) uniformly:

‖u − u
γ
h ‖ ∼ ‖u − uγ‖ + ‖uγ − u

γ
h ‖ ∼

∼
(
h1−d/p +

1
√
γ
h−d/2

)1/2

+ h| log h|.
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Relaxing constraints � penalization, numerical results
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Relaxing constraints � barriers (H., Schiela 2008)

Barriers: relax y ≤ b by adding −µ
∫

Ω log (b − y)dx to cost functional (µ > 0).
Numerical analysis yields

Buµ ∈ L2(Ω) uniformly:

‖u − u
µ
h ‖ ∼ ‖u − uµ‖ + ‖uµ − u

µ
h ‖ ∼

√
µ + h1−d/4,

Buµ ∈ W 1,s(Ω) for all s ∈ (1, d
d−1

) uniformly:

‖u − u
µ
h ‖ ∼ ‖u − uµ‖ + ‖uµ − u

µ
h ‖ ∼

√
µ + h2−d/2−ε,

Buµ ∈ L∞(Ω),Buµh ∈ L∞(Ω) uniformly:

‖u − u
µ
h ‖ ∼ ‖u − uµ‖ + ‖uµ − u

µ
h ‖ ∼

√
µ + h| log h|.

This is work in progress with Anton Schiela.
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Relaxing constraints � barriers, numerical results
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Consequence: Grid size h and parameters (λ, γ, µ) should be coupled;

Lavrentiev:
√
λ ∼ h2−d/2,

Barriers:
√
µ ∼ h2−d/2,

Penalization (p =∞): 1√
γ
∼ h1+d/2.
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Constraints on the gradient

Consider

min
u∈Uad

J(u) =
1

2

∫
Ω
|y − z|2 +

α

r

∫
Ω
|u|r

(
+
α

2

∫
Ω
|u|2

)

where y = G(u), i.e. solves the pde, and ∇y ∈ Yad.

Here
Yad = {z ∈ C0(Ω̄)d | |z(x)| ≤ δ, x ∈ Ω̄},

and

r = 2 : Uad = {u ∈ L2(Ω) | a ≤ u ≤ b a.e. in Ω}(a, b ∈ L∞),
r > d : Uad = Lr (Ω).

Then Uad ⊂ Lr (Ω) for r > d ⇒ ∇y ∈ C0(Ω̄)d .

Slater condition:

∃û ∈ Uad |∇ŷ(x)| < δ, x ∈ Ω̄, where ŷ solves the pde with u = û.
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Optimality conditions (Casas & Fernandez)

An element u ∈ Uad is a solution if and only if there exist ~µ ∈M(Ω̄)d and

p ∈ Lt(Ω) (t < d
d−1

) such that∫
Ω pAz −

∫
Ω(y − z)z =

∫
Ω̄∇z · d~µ ∀z ∈ W 2,t′(Ω) ∩W

1,t′

0 (Ω)∫
Ω̄(z−∇y) · d~µ ≤ 0 ∀z ∈ Yad,∫

Ω(p + αu)(ũ − u) ≥ 0 ∀ũ ∈ Uad for r = 2, or

p + α((u+)|u|r−2u) = 0 in Ω for r > d .

Structure of multiplier: ~µ = 1
δ
∇y µ, where µ ∈M(Ω̄) ≥ 0 is concentrated on

{x ∈ Ω̄ | |∇y(x)| = δ}.
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FE discretization, conventional

Piecewise linear, continuous Ansatz for the state yh = Gh(u) ∈ Xh .

The discrete control problem reads

min
u∈Uad

Jh(u) :=
1

2

∫
Ω
|yh − z|2 +

α

r

∫
Ω
|u|r

(
+
α

2

∫
Ω
|u|2

)
subject to yh = Gh(u) and

( 1

|T |

∫
T

∇yh
)
T∈Th

∈ Y h
ad,

where

Y h
ad := {ch : Ω̄→ Rd | ch|T is constant and |ch|T | ≤ δ, T ∈ Th}.
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FE discretization, conventional, optimality conditions

The variational discrete problem has a unique solution uh ∈ Uad. There exist
µT ∈ Rd ,T ∈ Th,X and ph ∈ Xh such that with yh = Gh(uh) we have

a(vh, ph) =

∫
Ω

(yh − z)vh +
∑

T∈Th,X

|T |∇vh|T · µT ∀vh ∈ Xh,

∑
T∈Th,X

|T |
(
chT −∇yh|T

)
· µT ≤ 0 ∀ch ∈ Ch,

ph + α((uh+)|uh|r−2uh) = 0 in Ω.

Structure of the multiplier: ~µT = µT
1
δ
∇yhT , where µT ∈ R. Furthermore,

µT ≥ 0 and µT > 0 only if |∇yhT | = δ.
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Results

Deckelnick, Günther, H. (Oberwolfach Report 2008): Let uh ∈ Uad be the
variational discrete optimal solution with corresponding state yh ∈ Xh and
adjoint variables ph ∈ Xh , ~µT (T ∈ Th).

Then for h small enough

‖yh‖, ‖uh‖Lr , ‖ph‖
L

r
r−1

,
∑

T∈Th,X |T | |µT | ≤ C ,

‖y − yh‖ ≤ Ch
1
2

(1− d
r

), ‖u − uh‖Lr ≤ Ch
1
r

(1− d
r

), and

‖u − uh‖L2 ≤ Ch
1
2

(1− d
r

).

These results are also valid for a piecewise constant Ansatz of the control.
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FE discretization, Raviart Thomas

Mixed fe approximation of the state with lowest order Raviart�Thomas element,
i.e.

(yh, vh) = Gh(u) ∈ Yh × Vh

denotes the solution of

∫
Ω
A−1vh · wh +

∫
Ω
yh divwh = 0 ∀wh ∈ Vh∫

Ω
zh divvh −

∫
Ω
a0yh zh +

∫
Ω
u zh = 0 ∀zh ∈ Yh.
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FE discretization, cont.

The discrete control problem reads

min
u∈Uad

Jh(u) :=
1

2

∫
Ω
|yh − z|2 +

α

2

∫
Ω
|u|2

subject to (yh, vh) = Gh(u) and
( 1

|T |

∫
T

A−1vh

)
T∈Th

∈ Y h
ad,

where

Y h
ad := {ch : Ω̄→ Rd | ch|T is constant and |ch|T | ≤ δ, T ∈ Th}.
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FE discretization, optimality conditions

The discrete problem has a unique solution uh ∈ Uad. Furthermore, there are
~µT ∈ Rd and (ph, χh) ∈ Yh × Vh such that with (yh, vh) = Gh(uh) we have∫

Ω
A−1χh · wh +

∫
Ω
ph divwh +

∑
T∈Th

~µT · −
∫
T

A−1wh = 0∀wh ∈ Vh∫
Ω
zh divχh −

∫
Ω
a0ph zh +

∫
Ω

(yh − z) zh = 0∀zh ∈ Yh.∫
Ω

(ph + αuh)(ũ − uh) ≥ 0∀ũ ∈ Uad∑
T∈Th

~µT ·
(
ch|T −−

∫
T

A−1vh
)
≤ 0 ∀ch ∈ Y h

ad.

Structure of the multiplier: ~µT = µT
1
δ
−
∫
T A−1vh, where µT ∈ R. Furthermore,

µT ≥ 0 and µT > 0 only if
∣∣−∫
T A−1vh

∣∣ = δ.
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Results

Deckelnick, Günther, H. (Numer. Math 2008): Let uh ∈ Uad be the optimal
solution of the discrete problem with corresponding state (yh, vh) ∈ Yh × Vh and
adjoint variables (ph, χh) ∈ Yh × Vh, ~µT ,T ∈ Th .

Then for h small enough

‖yh‖,
∑

T∈Th |~µT | ≤ C , and

‖u − uh‖ + ‖y − yh‖ ≤ Ch
1
2 | log h|

1
2 .
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Constraints on the gradient, example

We take Ω = B2(0) and consider

min J(u) =
1

2
‖y − z‖2

L2(Ω)
+

1

2
‖u‖2

L2(Ω)

with pointwise bounds on the constraints, i.e. {a ≤ u ≤ b}, where
a, b ∈ L∞(Ω), and pointwise bounds on the gradient, i.e. |∇y(x)| ≤ δ := 1/2.
State and control satisfy

−∆y = f + u in Ω, y = 0 on ∂Ω.

Data:

z(x) :=

{ 1
4

+ 1
2
ln 2− 1

4
|x|2 , 0 ≤ |x| ≤ 1

1
2
ln 2− 1

2
ln |x| , 1 < |x| ≤ 2

f (x) :=

{
2 , 0 ≤ |x| ≤ 1
0 , 1 < |x| ≤ 2

Solution:

y(x) ≡ z(x) and u(x) =

{
−1 , 0 ≤ |x| ≤ 1
0 , 1 < |x| ≤ 2
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Numerical experiment, piecewise constant control Ansatz
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Experimental order of convergence

RL ‖u − uh‖L4 ‖u − uh‖ ‖y − yh‖
1 0.76678 0.72339 1.90217
2 0.33044 0.64248 1.25741
3 0.27542 0.54054 1.23233
4 0.28570 0.53442 1.16576

Results show the predicted behaviour, since r =∞.
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Numerical solution, mixed �nite elements
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Experimental order of convergence

RL ‖u − uh‖ ‖y − yh‖ ‖yP − yPh ‖
1 0.98576 1.06726 1.08949
2 0.51814 1.02547 1.09918
3 0.50034 1.01442 1.08141

Superscript P denotes post�processed piecewise linear state. It attains the same
order of convergence but yields signi�cantly smaller approximation error.
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Details can be found in
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Further aspects and applications

Optimal control of PDEs on surfaces

Applications to �ow control
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PDE constrained optimization on surfaces

Formulation of optimal control problems on surfaces is along the lines of the
planar case. Concerning discretization, the approximation of the surface has to
be considered;

Elliptic case

Use Dziuk's �nite element concept for the Laplace Beltrami operator
of 1988 for the discretization of the state equation;
Use variational discretization (H. COAP 2005) for the discretization of
the control problem;
Use a semismooth Newton method of Hintermüller, Ito and Kunisch;
Michael Ulbrich (SIOPT 2003) to solve the resulting nonlinear systems.

Parabolic case

Use ESFEM from Dziuk and Elliott (Acta Numerica 2013) for the
discretization of the parabolic PDE on the evolving surface;
Use variational discretization (H. COAP 2005) for the discretization of
the control problem.
Use a semismooth Newton method of Hintermüller et al. (SIOPT
2003) to solve the resulting nonlinear systems.

→ more details on demand.
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Application: control of Navier Stokes systems

The classical instationary NS system: steer y to ȳ , where

yt − ν∆y + (y∇y) +∇p = Bu in ΩT ,
−div y = 0 in ΩT ,

+IC + BC .

The Boussinesq approximation: steer y to ȳ and/or τ to τ̄

yt + (y · ∇)y − ν∆y +∇p + β τ ~g = Byu in ΩT ,
−div y = 0 in ΩT ,

τt + (y · ∇)τ − χ∆τ − f = Bτu in ΩT ,
+IC + BC .

The Cahn-Hilliard Navier-Stokes system: steer c to c̄

yt − 1
Re

∆y + y · ∇y +∇p + Kc∇w = Bu in ΩT ,

−div y = 0 in ΩT ,

ct − 1
Pe

∆w +∇c · y = 0 in ΩT ,

−γ2∆c + Φ′(c)− w = 0 in ΩT ,
+IC + BC .
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yt + (y · ∇)y − ν∆y +∇p + β τ ~g = Byu in ΩT ,
−div y = 0 in ΩT ,

τt + (y · ∇)τ − χ∆τ − f = Bτu in ΩT ,
+IC + BC .

The Cahn-Hilliard Navier-Stokes system: steer c to c̄

yt − 1
Re

∆y + y · ∇y +∇p + Kc∇w = Bu in ΩT ,

−div y = 0 in ΩT ,

ct − 1
Pe

∆w +∇c · y = 0 in ΩT ,

−γ2∆c + Φ′(c)− w = 0 in ΩT ,
+IC + BC .



Mathematics of PDE constrained optimization
M. Hinze
138/167

Decay, distributed control of classical NSE, H. SICON 2005

A := −ν∆, b(y) := P[(y∇)y ], solenoidal setting. Let ρ denote stepsize in
stepest descent, h time stepping.

ρ < 2 positive, h small(ρ), b and ȳ smooth and bounded in appropriate norms.

Theorem 1: The iterates {y j} of instantaneous control strategy satisfy

|y j − ȳ(tj )| ≤ c κj

with some positive κ < 1.

Theorem 2: For the unique solution y of the continuous control law

ẏ + Ay = b(y)−

−
ρ

h
B∗B(y − ȳ)− ρB∗B(b(y)− b(ȳ)) + ˙̄y + Aȳ − b(ȳ)

y(0) = y0,

|y − ȳ | decays exponentially to zero with order −ρ
h
, i.e.

|y(t)− ȳ(t)| ≤ C exp(−
ρ

h
t) |y(0)− ȳ(0)|
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y(0) = y0,
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y(0) = y0,
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Exponential decay, laminar cavity �ow, Stokes tracking
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BFS �ow, domain

Cost functionals:

J(y , u) = 1
2

T∫
0

[∫
Ωs
|y − yst |2 dx + γ

∫
Γc

u2 dΓc
]
dt,

J(y , u) =
T∫
0

[∫
Γs

1
2
∂y1
∂x2

(∂y1
∂x2
− |∂y1

∂x2
|) dΓs + γ

2

∫
Γc

g2 dΓc
]
dt.
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BFS feedback control, movies

Boundary control with back�ow observation in volume after the step.
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Boundary control with back�ow observation at the bottom boundary.
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MPC for Boussinesq approximation in the cavity

A :=

[
−P∆ −Gr~g
0 −∆

]
, b(x, t) = b(y , τ ) :=

[
P[(v∇)v ]

(v∇)τ

]

min J(y , τ, u, uF , uQ) =
i+M∑
j=i+1

(
c0

2

∫
Ω

(y j − z j )2dx +
c1

2

∫
Ω

(τ j − S j )2dx

+
c2

2

∫
Γ

u j
2
dx +

c3

2

∫
Ω

u
j
F

2
dx +

c4

2

∫
Ω

u
j
Q

2
dx) s.t. transition constraints

1
dt
τ j+1 − a∆τ j+1 = cQ u

j+1
Q + 1

dt
τ j − (y j∇)τ j

a∂ητ j+1 = α(u j+1 − τ j+1 |Γ)
1
dt
y j+1 − ν∆y j+1 +∇pj+1 = cFu

j+1
F + 1

dt
y j − (y j∇)y j − 1

dt
τ j+1~g

−div y j+1 = 0
y j+1 |Γ = 0

for j = i , . . . , i + M − 1.
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MPC Results

Control target
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As expected: distributed force is more e�ective than distributed heating, which
is more e�ective than boundary heating.
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MPC results - control horizon
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Cost decreases with increasing the length of the control horizon M (dis-
tributed heating)
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MPC with boundary heating only works for su�ciently large control hori-
zons.
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Tracking perturbed optimal trajectories
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Instantaneous control with distributed heating tracks perturbed trajectory, the
optimal open loop strategy fails.
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Instantaneous control of CHNS

At each time instance tk solve approximately the minimization problem

min
u∈U

Jk(c, u) =
1

2

∫
Ω

(c − ckd )2 dx +
α

2

∫
Ω
|u|2 dx (Pk )

s.t.

y −
τ

Re
∆y = u + f (0.20)

c −
τ

Pe
∆w = cold − τ∇cold y (0.21)

−γ2∆c + λs(c)− w = cold (0.22)

Here

f (cold ,wold , yold ) = yold − τcold∇wold − τ (yold∇)yold

λs(c) = s(max(0, c − 1) + min(0, c + 1))

Note: scheme (0.20)-(0.22) is not recommended to integrate the CHNS. It only
serves the purpose of controller construction.
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The gradient of Jk

Here we have

∇Jk(uk0) = αuk0 + p3,

where p3 stems from the solution to the adjoint system

−γ2∆p2 + λ′s(c)p2 − τ∇p1 · y + p1 = c − cd (0.23)

p2 = −
τ

Pe
∆p1 (0.24)

p3 −
τ

Re
∆p3 = τc∇p1. (0.25)
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Example: Circle2Square

Initial state (circle) and desired state (square)
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Morphing: Circle2Square

Circle2Square
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Circle2Square: snapshot of controlled states
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Circle to Square
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MPC: Circle to Square
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Figure: Deviation of stabilized square from desired square for several prediction
horizons.
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Dirichlet boundary control of rising bubble: bottom and side walls

RisingBubbleControl
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Dirichlet boundary control of rising bubble: 20 controls at side walls

RisingBubbleControl
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Instantaneous control: decay
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Figure: Deviation of controlled bubble from desired bubble.
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Dirichlet boundary control of rising bubble: 5 controls at side walls

RisingBubbleControl
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Instantaneous control: decay
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Figure: Deviation of controlled bubble from desired bubble.
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Control of weakly conducting �uids (Sfb 609)

Thanks to Tom Weier, FZR Rossendorf
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Develop methods for circular cylinder

Control target: Re-attach �ow utilizing near wall Lorentz forces movie Desired:
Open- or closed-loop control strategy
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Generation of the Lorentz Force

On the surface of the cylinder a Lorentz force is generated with actuators. It
decays exponentially in the �ow (T. Berger et al., Phys. Fluids 2000). The
Lorentz force has the form

FL(x, y) := eφg(φ)e−
π
a
·dist[(x,y), cylinder ],

g(φ) =

 1, φ0 ≤ φ ≤ φ1

−1, 180◦ + φ0 ≤ φ ≤ 180◦ + φ1

0, else ,
.

a electrode-/magnet-spacing. The direction of the Lorentz Force is de�ned by
the arrangement of the magnets/electrodes.
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Schematic
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Mathematical Model: NSEs

ut + (u · ∇)u +∇p −
1

Re
∇2u = NFL

∇ · u = 0

plus initial and boundary conditions.

The Interaction parameter N describes the ratio of the electromagnetic and the
inertial forces of the �ow,

N =
J0B0D

ρU2
∞

,

with J0 the current density and B0 magnetic induction.

The numerics are validated against the computations of R. Grundmann/O.
Posdziech (TUD). Comparison with experiments by G. Gerbeth/T. Weier et al.
(FZR) to be addressed.
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Control with near wall Lorentz force

Control: u(t, x) =
n∑
i=1

ui (t)fi (x), fi (x) = e−|x−xi |
2
.

Desired �ow x̄: Stokes �ow.
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Control with near wall Lorentz force

Control: u(t, x) =
2∑

i=1

ui (t)eφfi (x), fi (x) = g(φ)e−
π
a
·dist[(x,y), cylinder ]

Desired �ow x̄ with x1 = 1.
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CPU time needed to compute the instantaneous control strategy =2,5 times
CPU time needed for one forward solve.

This amounts to 1-2 % of the CPU time needed to compute the optimal control
trajectory.
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That's all! Thank's for the attention!


